QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#389904#7782. Ursa MinorMysterious_CatWA 147ms15920kbC++176.7kb2024-04-14 21:03:402024-04-14 21:03:40

Judging History

你现在查看的是最新测评结果

  • [2024-04-14 21:03:40]
  • 评测
  • 测评结果:WA
  • 用时:147ms
  • 内存:15920kb
  • [2024-04-14 21:03:40]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

const int S = 450;
const int N = 2e5 + 5;
const int base[2] = {3, 5};
const int mod[2] = {998244353, (int)1e9 + 7};

int n, m, q, B, lg[N], a[N], b[N], f[N][18], pw[N][2], inv[N][2], spw[N][2], bid[N], sum0[S][S][2], sum[S][S][2], Bsum[S][2], Sum[N][2];

int qpow(int x, int y, int p) {
    int res = 1;
    while (y) {
        if (y & 1) {
            res = 1ll * res * x % p;
        }
        x = 1ll * x * x % p;
        y >>= 1;
    }
    return res;
}

int query(int l, int r) {
    int k = lg[r - l + 1];
    return __gcd(f[l][k], f[r - (1 << k) + 1][k]);
}

int main() {
    ios::sync_with_stdio(0); cin.tie(0);
    cin >> n >> m >> q;
    B = sqrt(n);
    for (int i = 2; i <= m; i++) lg[i] = lg[i / 2] + 1;
    pw[0][0] = pw[0][1] = spw[0][0] = spw[0][1] = inv[0][0] = inv[0][1] = 1;
    int iv[2] = {qpow(3, mod[0] - 2, mod[0]), qpow(5, mod[1] - 2, mod[1])};
    for (int t = 0; t < 2; t++)
        for (int i = 1; i <= n; i++) {
            pw[i][t] = 1ll * pw[i - 1][t] * base[t] % mod[t];
            inv[i][t] = 1ll * inv[i - 1][t] * iv[t] % mod[t];
            spw[i][t] = (spw[i - 1][t] + pw[i][t]) % mod[t];
        }
    for (int i = 1; i <= n; i++) cin >> a[i];
    for (int i = 1; i <= (n - 1) / B + 1; i++) {
        int l = (i - 1) * B + 1, r = min(i * B, n);
        bid[l] = i;
        for (int t = 0; t < 2; t++) Sum[l][t] = 1ll * a[l] * pw[l][t] % mod[t];
        for (int j = l + 1; j <= r; j++) {
            bid[j] = i;
            for (int t = 0; t < 2; t++) Sum[j][t] = (Sum[j - 1][t] + 1ll * a[j] * pw[j][t] % mod[t]) % mod[t];
        }
        for (int t = 0; t < 2; t++) Bsum[i][t] = (Bsum[i - 1][t] + Sum[r][t]) % mod[t];
        for (int j = l; j <= r; j++)
            for (int k = 1; k <= B; k++) {
                for (int t = 0; t < 2; t++) {
                    sum[i][k][t] = (sum[i][k][t] + 1ll * a[j] * pw[j % k][t] % mod[t]) % mod[t];
                    sum0[i][k][t] = (sum0[i][k][t] + (j % k == 0 ? a[j] : 0)) % mod[t];
                }
            }
    }
    for (int i = 1; i <= m; i++) cin >> b[i], f[i][0] = b[i];
    for (int j = 1; 1 << j <= m; j++)
        for (int i = 1; i + (1 << j) - 1 <= m; i++)
            f[i][j] = __gcd(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
    for (int i = 1; i <= q; i++) {
        char op;
        cin >> op;
        if (op == 'U') {
            int x, v;
            cin >> x >> v;
            int l = (bid[x] - 1) * B + 1, r = min(bid[x] * B, n);
            for (int k = 1; k <= B; k++)
                for (int t = 0; t < 2; t++) {
                    sum[bid[x]][k][t] = (sum[bid[x]][k][t] - 1ll * a[x] * pw[x % k][t] % mod[t] + mod[t]) % mod[t];
                    sum0[bid[x]][k][t] = (sum0[bid[x]][k][t] - (x % k == 0 ? a[x] : 0) + mod[t]) % mod[t];                    
                }
            a[x] = v;
            for (int k = 1; k <= B; k++)
                for (int t = 0; t < 2; t++) {
                    sum[bid[x]][k][t] = (sum[bid[x]][k][t] + 1ll * a[x] * pw[x % k][t] % mod[t]) % mod[t];
                    sum0[bid[x]][k][t] = (sum0[bid[x]][k][t] + (x % k == 0 ? a[x] : 0)) % mod[t];
                }
            for (int t = 0; t < 2; t++) Sum[l][t] = 1ll * a[l] * pw[l][t] % mod[t];
            for (int j = l + 1; j <= r; j++)
                for (int t = 0; t < 2; t++)
                    Sum[j][t] = (Sum[j - 1][t] + 1ll * a[j] * pw[j][t] % mod[t]) % mod[t];
            for (int j = 1; j <= (n - 1) / B + 1; j++)
                for (int t = 0; t < 2; t++)
                    Bsum[j][t] = (Bsum[j - 1][t] + Sum[min(j * B, n)][t]) % mod[t];
        }
        else {
            int l, r, s, t;
            cin >> l >> r >> s >> t;
            int g = __gcd(r - l + 1, query(s, t)), S[2] = {}, S0[2] = {};
            if (g <= B) {
                if (bid[l] == bid[r]) {
                    for (int j = l; j <= r; j++)
                        for (int t = 0; t < 2; t++) {
                            S[t] = (S[t] + 1ll * a[j] * pw[j % g][t] % mod[t]) % mod[t];
                            S0[t] = (S0[t] + (j % g == 0 ? a[j] : 0)) % mod[t];
                        }
                }
                else {
                    for (int j = 1; j < bid[r]; j++)
                        for (int t = 0; t < 2; t++) {
                            S[t] = (S[t] + sum[j][g][t]) % mod[t];
                            S0[t] = (S0[t] + sum0[j][g][t]) % mod[t];
                        }
                    for (int j = (bid[r] - 1) * B + 1; j <= r; j++)
                        for (int t = 0; t < 2; t++) {
                            S[t] = (S[t] + 1ll * a[j] * pw[j % g][t] % mod[t] + mod[t]) % mod[t];
                            S0[t] = (S0[t] + (j % g == 0 ? a[j] : 0)) % mod[t];
                        }
                    for (int j = 1; j < bid[l]; j++)
                        for (int t = 0; t < 2; t++) {
                            S[t] = (S[t] + sum[j][g][t]) % mod[t];
                            S0[t] = (S0[t] - sum0[j][g][t] + mod[t]) % mod[t];
                        }
                    for (int j = (bid[l] - 1) * B + 1; j < l; j++)
                        for (int t = 0; t < 2; t++) {
                            S[t] = (S[t] - 1ll * a[j] * pw[j % g][t] % mod[t] + mod[t]) % mod[t];
                            S0[t] = (S0[t] - (j % g == 0 ? a[j] : 0) + mod[t]) % mod[t];
                        }
                }
            }
            else {
                for (int j = g * ((l - 1) / g + 1); j <= r; j += g)
                    for (int t = 0; t < 2; t++) S0[t] = (S0[t] + a[j]) % mod[t];
                for (int j = 0; j <= r; j += g) {
                    if (j > n) break;
                    int L = j + !j, R = min(j + g - 1, r);
                    for (int t = 0; t < 2; t++) {
                        int v = Bsum[bid[R] - 1][t] + Sum[R][t] - (Bsum[bid[L - 1] - 1][t] + Sum[L - 1][t]);
                        v = (v % mod[t] + mod[t]) % mod[t];
                        S[t] = (S[t] + 1ll * v * inv[j][t] % mod[t]) % mod[t];
                    }
                }
                for (int j = 0; j < l; j += g) {
                    int L = j + !j, R = min(j + g - 1, l - 1);
                    for (int t = 0; t < 2; t++) {
                        int v = Bsum[bid[R] - 1][t] + Sum[R][t] - (Bsum[bid[L - 1] - 1][t] + Sum[L - 1][t]);
                        v = (v % mod[t] + mod[t]) % mod[t];
                        S[t] = (S[t] - 1ll * v * inv[j][t] % mod[t] + mod[t]) % mod[t];
                    }
                }
            }
            if (S[0] == 1ll * S0[0] * spw[g - 1][0] % mod[0]
                && S[1] == 1ll * S0[1] * spw[g - 1][1] % mod[1]) cout << "Yes\n";
            else cout << "No\n";
        }
    }

    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 11908kb

input:

6 4 5
1 1 4 5 1 4
3 3 2 4
Q 1 5 1 2
Q 2 5 3 4
U 5 2
Q 1 6 1 2
Q 2 5 3 4

output:

Yes
No
No
Yes

result:

ok 4 tokens

Test #2:

score: 0
Accepted
time: 0ms
memory: 15920kb

input:

1 1 1
0
1
Q 1 1 1 1

output:

Yes

result:

ok "Yes"

Test #3:

score: -100
Wrong Answer
time: 147ms
memory: 12252kb

input:

2000 2000 200000
1 1 2 0 0 2 0 2 0 0 0 0 0 2 2 1 2 0 0 2 2 2 1 0 1 2 1 2 0 0 1 1 1 2 0 0 2 2 2 2 0 2 0 0 2 1 2 0 0 1 2 2 1 0 2 0 0 0 1 2 2 1 2 2 0 0 1 1 1 0 0 2 0 0 1 1 0 2 2 2 1 0 0 1 0 1 2 2 2 1 1 2 2 1 2 1 0 2 2 3 1 3 2 3 1 0 1 2 0 1 1 1 0 2 2 3 2 0 3 2 3 3 1 2 3 1 2 0 1 0 3 1 0 0 2 0 1 2 1 3 2 2...

output:

Yes
Yes
No
No
Yes
No
No
No
Yes
Yes
Yes
No
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
No
Yes
Yes
No
No
No
No
No
Yes
No
No
No
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes
No
No
Yes
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
No
Yes
Yes
No
Yes
Y...

result:

wrong answer 4th words differ - expected: 'Yes', found: 'No'