QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#383094#5069. VacationhhoppitreeWA 404ms70000kbC++149.9kb2024-04-08 21:50:022024-04-08 21:50:03

Judging History

你现在查看的是最新测评结果

  • [2024-04-08 21:50:03]
  • 评测
  • 测评结果:WA
  • 用时:404ms
  • 内存:70000kb
  • [2024-04-08 21:50:02]
  • 提交

answer

#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 5;

long long States[N * 20], *nowState = States;

inline long long* myMalloc(int sz)
{
    long long *sta = nowState;
    nowState += sz;
    return sta;
}

char I[40000050], *J = I, O[8000050], *o = O;

inline int read()
{
    unsigned int x = 0;
    bool zf = 0;
    while ((*J < 48 || 57 < *J) && (*J) != '-') ++J;
    ((*J++ == '-') ? (zf = 1) : x = *(J - 1) ^ 48);
    while (47 < *J && *J < 58) x = (x << 1) + (x << 3) + (*J++ ^ 48);
    return (zf ? -(int)x : x);
}

inline void print(unsigned long long x)
{
    static unsigned int S[20], T = 0, y;
    do y = x / 10, S[T++] = x - y * 10; while(x = y);
    while (T) *o++ = S[--T] ^ 48;
}

int n, m, C, a[N];

namespace SEG1
{
    typedef long long LL;
    typedef tuple<LL, LL, LL, LL> dt;
    int sz;
    dt z[1 << 22];

    inline dt operator + (dt x, dt y)
    {
        auto [a, b, c, d] = x;
        auto [e, f, g, h] = y;
        return {a + e, max({b, f, d + g}), max(c, a + g), max(h, e + d)};
    }

    inline void build()
    {
        sz = 1;
        while (sz <= n + 1) {
            sz <<= 1;
        }
        for (int i = 1; i <= n; ++i) {
            z[i + sz] = {a[i], max(a[i], 0), max(a[i], 0), max(a[i], 0)};
        }
        for (int i = (n + sz) >> 1; i; --i) {
            z[i] = z[i << 1] + z[i << 1 | 1];
        }
        return;
    }

    inline void modify(int x)
    {
        z[x + sz] = {a[x], max(a[x], 0), max(a[x], 0), max(a[x], 0)};
        x += sz;
        while (x >>= 1) {
            z[x] = z[x << 1] + z[x << 1 | 1];
        }
        return;
    }

    inline long long query(int L, int R)
    {
        dt rL = {0, 0, 0, 0}, rR = {0, 0, 0, 0};
        for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
            (!(L & 1)) && (rL = rL + z[L ^ 1], 0);
            (R & 1) && (rR = z[R ^ 1] + rR, 0);
        }
        auto [A, B, C, D] = rL + rR;
        return B;
    }
}

int bl;
long long glo1[N], glo2[N];

namespace SEG2
{
    int n, sz;
    long long mx[1 << 22];

    inline void build()
    {
        n = bl - 2, sz = 1;
        while (sz <= n + 1) {
            sz <<= 1;
        }
        for (int i = 1; i <= n; ++i) {
            mx[i + sz] = max(glo1[i], glo2[i]);
        }
        for (int i = (n + sz) >> 1; i; --i) {
            mx[i] = max(mx[i << 1], mx[i << 1 | 1]);
        }
        return;
    }

    inline void modify(int x)
    {
        mx[x + sz] = max(glo1[x], glo2[x]);
        x += sz;
        while (x >>= 1) {
            mx[x] = max(mx[x << 1], mx[x << 1 | 1]);
        }
        return;
    }

    inline long long query(int L, int R)
    {
        long long res = 0;
        for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
            (!(L & 1)) && (res = max(res, mx[L ^ 1]));
            ((R & 1)) && (res = max(res, mx[R ^ 1]));
        }
        return res;
    }
}

long long Sa[N], Sb[N];

inline tuple<long long, long long, long long> operator + (tuple<long long, long long, long long> x, tuple<long long, long long, long long> y);

struct DS
{
    int len;

    typedef long long LL;
    LL *MxA, *MxB, *LazyA, *LazyB, *S;

    friend inline tuple<LL, LL, LL> operator + (tuple<LL, LL, LL> x, tuple<LL, LL, LL> y)
    {
        long long A, B, C, D, E, F;
        tie(A, B, C) = x, tie(D, E, F) = y;
        return {max(A, D), max(B, E), max({C, F, B + D})};
    }

    void build(int k, int l, int r)
    {
        if (l == r) {
            MxA[k] = Sa[l];
            MxB[k] = Sb[l];
            S[k] = -1e18;
            return;
        }
        int mid = (l + r) >> 1;
        build(k << 1, l, mid);
        build(k << 1 | 1, mid + 1, r);
        tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
                                    tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
        return;
    }

    inline void Build()
    {
        int t = 2 * len, z = 1;
        while (z < t) {
            z <<= 1;
        }
        MxA = myMalloc(z + 1);
        MxB = myMalloc(z + 1);
        LazyA = myMalloc(z + 1);
        LazyB = myMalloc(z + 1);
        S = myMalloc(z + 1);
        build(1, 1, len);
        return;
    }

    tuple<LL, LL, LL> query(int k, int l, int r, int x, int y)
    {
        if (l >= x && r <= y) {
            return {MxA[k], MxB[k], S[k]};
        }
        pushdown(k);
        int mid = (l + r) >> 1;
        if (mid >= y) {
            return query(k << 1, l, mid, x, y);
        }
        if (mid < x) {
            return query(k << 1 | 1, mid + 1, r, x, y);
        }
        return query(k << 1, l, mid, x, y) + query(k << 1 | 1, mid + 1, r, x, y);
    }

    inline void addTagA(int k, long long x)
    {
        LazyA[k] += x;
        MxA[k] += x;
        S[k] += x;
        return;
    }

    inline void addTagB(int k, long long x)
    {
        LazyB[k] += x;
        MxB[k] += x;
        S[k] += x;
        return;
    }

    inline void pushdown(int k)
    {
        if (LazyA[k]) {
            addTagA(k << 1, LazyA[k]);
            addTagA(k << 1 | 1, LazyA[k]);
            LazyA[k] = 0;
        }
        if (LazyB[k]) {
            addTagB(k << 1, LazyB[k]);
            addTagB(k << 1 | 1, LazyB[k]);
            LazyB[k] = 0;
        }
        return;
    }

    void modifyA(int k, int l, int r, int x, int y)
    {
        if (r <= x) {
            addTagA(k, y);
            return;
        }
        if (l > x) {
            return;
        }
        pushdown(k);
        int mid = (l + r) >> 1;
        modifyA(k << 1, l, mid, x, y);
        modifyA(k << 1 | 1, mid + 1, r, x, y);
        tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
                                    tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
        return;
    }

    void modifyB(int k, int l, int r, int x, int y)
    {
        if (l >= x) {
            addTagB(k, y);
            return;
        }
        if (r < x) {
            return;
        }
        pushdown(k);
        int mid = (l + r) >> 1;
        modifyB(k << 1, l, mid, x, y);
        modifyB(k << 1 | 1, mid + 1, r, x, y);
        tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
                                    tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
        return;
    }

    inline void modify(int type, int x, int y)
    {
        if (!type) {
            modifyA(1, 1, len, x, y);
        } else {
            modifyB(1, 1, len, x, y);
        }
        return;
    }
} SEG3[N];

inline long long calc(int wh, int L = 0, int R = 0)
{
    if (!L) {
        return SEG3[wh].S[1];
    }
    L -= (wh - 1) * C, R -= (wh - 1) * C;
    long long A, B, C;
    tie(A, B, C) = SEG3[wh].query(1, 1, SEG3[wh].len, L, R);
    return C;
}

signed main()
{
    fread(I, 1, 40000038, stdin);
    n = read(), m = read(), C = read();
    bl = (n - 1) / C + 1;
    for (int i = 1; i <= n; ++i) {
        a[i] = read();
    }
    SEG1::build();
    for (int i = 2; i <= bl - 1; ++i) {
        long long s = 0, mx = 0;
        for (int j = (i - 1) * C + 1; j <= i * C && j <= n; ++j) {
            mx = max(mx, s = max(s, 0ll) + a[j]);
        }
        glo1[i] = mx;
    }
    for (int i = 1; i <= bl - 1; ++i) {
        SEG3[i].len = min((i + 1) * C, n) - i * C;
        for (int j = C; j; --j) {
            Sa[j] = Sa[j + 1] + a[j + (i - 1) * C];
        }
        for (int j = 1; j <= SEG3[i].len; ++j) {
            Sb[j] = Sb[j - 1] + a[j + i * C];
        }
        SEG3[i].Build();
    }
    for (int i = 2; i <= bl - 2; ++i) {
        glo2[i] = calc(i);
    }
    SEG2::build();
    while (m--) {
        int opt = read(), L = read(), R = read();
        if (opt == 1) {
            if (a[L] == R) {
                continue;
            }
            int D = R - a[L];
            a[L] = R;
            SEG1::modify(L);
            int bel = (L - 1) / C + 1;
            long long flg = max(glo1[bel], glo2[bel]);
            if (bel >= 2 && bel <= bl - 1) {
                glo1[bel] = SEG1::query((bel - 1) * C + 1, bel * C);
            }
            if (bel >= 2) {
                SEG3[bel - 1].modify(1, L - (bel - 1) * C, D);
            }
            if (bel <= bl - 1) {
                SEG3[bel].modify(0, L - (bel - 1) * C, D);
            }
            if (bel >= 3) {
                long long tv = max(glo1[bel - 1], glo2[bel - 1]);
                glo2[bel - 1] = calc(bel - 1);
                if (max(glo1[bel - 1], glo2[bel - 1]) != tv && bel <= bl - 1) {
                    SEG2::modify(bel - 1);
                }
            }
            if (bel >= 2 && bel <= bl - 2) {
                glo2[bel] = calc(bel);
            }
            if (bel >= 2 && bel <= bl - 2 && flg != max(glo1[bel], glo2[bel])) {
                SEG2::modify(bel);
            }
        } else {
            if (R - L + 1 <= C) {
                print(SEG1::query(L, R));
                *o++ = '\n';
                continue;
            }
            int bel = (L - 1) / C + 1, ber = (R - 1) / C + 1;
            long long res = (bel + 2 >= ber ? 0ll : SEG2::query(bel + 1, ber - 2));
            if (bel + 1 != ber) {
                res = max(res, glo1[ber - 1]);
            }
            res = max({res, SEG1::query(L, L + C - 1), SEG1::query(R - C + 1, R)});
            if (ber == bel + 1) {
                res = max(res, calc(bel, L, R - C));
            } else {
                res = max({res, calc(bel, L, bel * C), calc(ber - 1, (ber - 2) * C + 1, R - C)});
            }
            print(res);
            *o++ = '\n';
        }
    }
    fwrite(O, 1, o - O, stdout);
    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3684kb

input:

5 6 3
0 -5 -3 8 -3
2 3 5
1 2 5
2 1 5
1 4 -3
2 3 5
2 1 5

output:

8
10
0
5

result:

ok 4 number(s): "8 10 0 5"

Test #2:

score: 0
Accepted
time: 254ms
memory: 70000kb

input:

200000 500000 1
387060158 961744470 37167782 737122872 -532977662 1604246 -30977399 871848791 444997246 454204578 -813187501 -660394286 448014171 -835115276 -631880452 887715308 258530352 805589560 -414653327 -156732249 -335096199 -80266237 367896009 738406627 -903652056 446120866 415658444 -1347916...

output:

999902477
999981999
999343404
999847372
999957587
998160312
999981999
999981999
999981999
999980061
999981999
999981999
999981999
999876122
999981999
999996602
999981999
999981999
999981999
999723649
999981999
999957587
999896087
999981999
999981999
999981999
999981999
999981999
999957587
999981999
...

result:

ok 250051 numbers

Test #3:

score: 0
Accepted
time: 263ms
memory: 60688kb

input:

200000 500000 5
802774074 383481934 -295470374 285359286 751657057 197444479 626916547 -828168464 288373833 -493446966 -208422769 956745384 919286225 959643271 -176531848 -380256966 357111771 -50890039 -637284768 -337010918 259019684 752475630 -259898780 98620995 -704832505 -532710796 -971600790 -84...

output:

4544135313
4544135313
4443416295
3390067591
4544135313
4544135313
4322308420
4386413596
4386413596
4165697630
4322308420
4287938127
4443416295
4544135313
4386413596
4165697630
4386413596
4386413596
4386413596
4323325838
4443416295
4386413596
4385851999
4544135313
4443416295
4443416295
4323325838
432...

result:

ok 249998 numbers

Test #4:

score: 0
Accepted
time: 263ms
memory: 58212kb

input:

200000 500000 10
294669347 -694582751 -596596961 -126098203 564639690 -654836388 -393227122 -835904658 699214733 147549986 -60745155 364274902 6365735 182107449 544381751 8255910 -581710335 -254751705 -547803021 113792037 -526424167 -948294769 -456727013 -172857504 627985189 -660230969 -233539222 -3...

output:

6382761194
6975829216
5771846079
7795537121
6975829216
7251135307
7795537121
7795537121
7795537121
7251135307
6382761194
7251135307
7795537121
7795537121
7251135307
6166320975
7251135307
5845186875
6304374419
7795537121
6533205084
6975829216
7795537121
6051983693
7795537121
6533205084
6671392380
553...

result:

ok 249912 numbers

Test #5:

score: 0
Accepted
time: 327ms
memory: 51584kb

input:

200000 500000 50
682924062 -410171362 727046928 -248951706 447030590 -828489266 -766563199 -502548010 -959695696 -583569857 -305162329 -550851997 -462615752 -822803313 -640012170 267251148 340565257 -111341766 689672874 -515868601 -242875719 -162422332 49211711 277849676 -108078900 -304560362 -50058...

output:

15856525974
15423765469
15423765469
15728637453
15856525974
15728637453
15728637453
15060577990
15856525974
15856525974
15060577990
15856525974
15856525974
15856525974
15060577990
15728637453
15856525974
15856525974
15856525974
15856525974
15592293852
15856525974
15592293852
15856525974
15423765469
...

result:

ok 249945 numbers

Test #6:

score: 0
Accepted
time: 340ms
memory: 51376kb

input:

200000 500000 100
-861625642 488714758 151701153 337144530 -318293290 -765334091 -210261967 -253541961 993816332 -736017816 52189861 -428475798 -281280689 875335671 889366119 -863352867 4083578 382040499 152212580 696548442 348806166 -403452187 -91390158 -86542614 -915521115 -615218473 374313280 -60...

output:

22356669163
16483275109
20675548507
20675548507
18341749229
16758974141
19886103941
22356669163
12776363397
19919404941
22356669163
22356669163
22356669163
20675548507
22356669163
22356669163
20675548507
22356669163
19886103941
20352085144
22356669163
22356669163
19064838381
19782436621
20675548507
...

result:

ok 250001 numbers

Test #7:

score: -100
Wrong Answer
time: 404ms
memory: 46988kb

input:

200000 500000 500
560111824 156076602 -300062433 -135130960 172514238 -107440145 332810571 -462042876 -248802506 163714210 -330670470 42796256 -486522143 -669315725 -916663241 992138762 904514188 -430525531 509990997 -414368382 886580739 968753025 -783053293 60399434 -189320070 -2477706 -334706343 4...

output:

8537564439
38429372430
32781696692
35966554114
8537564439
8537564439
6169982499
40039498632
6169982499
42076835781
8537564439
42076835781
40039498632
8537564439
40039498632
8537564439
272958403
40936887546
38671383728
35611226388
42076835781
8537564439
8537564439
8537564439
35611226388
42076835781
2...

result:

wrong answer 1st numbers differ - expected: '51487237399', found: '8537564439'