QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#382596 | #5069. Vacation | hhoppitree | ML | 0ms | 36040kb | C++14 | 9.6kb | 2024-04-08 16:45:53 | 2024-04-08 16:45:54 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
char I[26000005], *J = I, O[8000005], *o = O;
inline int read()
{
unsigned int x = 0;
bool zf = 0;
while ((*J < 48 || 57 < *J) && (*J) != '-') ++J;
((*J++ == '-') ? (zf = 1) : x = *(J - 1) ^ 48);
while (47 < *J && *J < 58) x = (x << 1) + (x << 3) + (*J++ ^ 48);
return (zf ? -(int)x : x);
}
inline void print(unsigned long long x)
{
static unsigned int S[16], T = 0, y;
do y = x / 10, S[T++] = x - y * 10; while(x = y);
while (T) *o++ = S[--T] ^ 48;
}
const int N = 2e5 + 5;
int n, m, C, a[N];
namespace SEG1
{
typedef long long LL;
typedef tuple<LL, LL, LL, LL> dt;
int sz;
dt z[1 << 21];
inline dt operator + (dt x, dt y)
{
auto [a, b, c, d] = x;
auto [e, f, g, h] = y;
return {a + e, max({b, f, d + g}), max(c, a + g), max(h, e + d)};
}
inline void build()
{
sz = 1;
while (sz <= n + 1) {
sz <<= 1;
}
for (int i = 1; i <= n; ++i) {
z[i + sz] = {a[i], max(a[i], 0), max(a[i], 0), max(a[i], 0)};
}
for (int i = sz; i; --i) {
z[i] = z[i << 1] + z[i << 1 | 1];
}
return;
}
inline void modify(int x)
{
z[x + sz] = {a[x], max(a[x], 0), max(a[x], 0), max(a[x], 0)};
x += sz;
while (x >>= 1) {
z[x] = z[x << 1] + z[x << 1 | 1];
}
return;
}
inline long long query(int L, int R)
{
dt rL = {0, 0, 0, 0}, rR = {0, 0, 0, 0};
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (rL = rL + z[L ^ 1], 0);
(R & 1) && (rR = z[R ^ 1] + rR, 0);
}
auto [A, B, C, D] = rL + rR;
return B;
}
}
int bl;
long long glo1[N], glo2[N];
namespace SEG2
{
int n, sz;
long long mx[N];
inline void build()
{
n = bl - 1, sz = 1;
while (sz <= n + 1) {
sz <<= 1;
}
for (int i = 1; i <= n; ++i) {
mx[i + sz] = max(glo1[i], glo2[i]);
}
for (int i = sz; i; --i) {
mx[i] = max(mx[i << 1], mx[i << 1 | 1]);
}
return;
}
inline void modify(int x)
{
mx[x + sz] = max(glo1[x], glo2[x]);
x += sz;
while (x >>= 1) {
mx[x] = max(mx[x << 1], mx[x << 1 | 1]);
}
return;
}
inline long long query(int L, int R)
{
long long res = 0;
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (res = max(res, mx[L ^ 1]));
((R & 1)) && (res = max(res, mx[R ^ 1]));
}
return res;
}
}
long long Sa[N], Sb[N];
inline tuple<long long, long long, long long> operator + (tuple<long long, long long, long long> x, tuple<long long, long long, long long> y);
struct DS
{
int len;
typedef long long LL;
vector<LL> MxA, MxB, LazyA, LazyB, S;
friend inline tuple<LL, LL, LL> operator + (tuple<LL, LL, LL> x, tuple<LL, LL, LL> y)
{
long long A, B, C, D, E, F;
tie(A, B, C) = x, tie(D, E, F) = y;
return {max(A, D), max(B, E), max({C, F, B + D})};
}
void build(int k, int l, int r)
{
if (l == r) {
MxA[k] = Sa[l];
MxB[k] = Sb[l];
S[k] = -1e18;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
return;
}
inline void Build()
{
int t = 2 * len, z = 1;
while (z < t) {
z <<= 1;
}
MxA.resize(z + 1), MxB.resize(z + 1);
LazyA.resize(z + 1), LazyB.resize(z + 1);
S.resize(z + 1);
build(1, 1, len);
return;
}
tuple<LL, LL, LL> query(int k, int l, int r, int x, int y)
{
if (l >= x && r <= y) {
return {MxA[k], MxB[k], S[k]};
}
pushdown(k);
int mid = (l + r) >> 1;
if (mid >= y) {
return query(k << 1, l, mid, x, y);
}
if (mid < x) {
return query(k << 1 | 1, mid + 1, r, x, y);
}
return query(k << 1, l, mid, x, y) + query(k << 1 | 1, mid + 1, r, x, y);
}
inline void addTagA(int k, int x)
{
LazyA[k] += x;
MxA[k] += x;
S[k] += x;
return;
}
inline void addTagB(int k, int x)
{
LazyB[k] += x;
MxB[k] += x;
S[k] += x;
return;
}
inline void pushdown(int k)
{
if (LazyA[k]) {
addTagA(k << 1, LazyA[k]);
addTagA(k << 1 | 1, LazyA[k]);
LazyA[k] = 0;
}
if (LazyB[k]) {
addTagB(k << 1, LazyB[k]);
addTagB(k << 1 | 1, LazyB[k]);
LazyB[k] = 0;
}
return;
}
void modifyA(int k, int l, int r, int x, int y)
{
if (r <= x) {
addTagB(k, y);
return;
}
if (l > x) {
return;
}
pushdown(k);
int mid = (l + r) >> 1;
modifyA(k << 1, l, mid, x, y);
modifyA(k << 1 | 1, mid + 1, r, x, y);
tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
return;
}
void modifyB(int k, int l, int r, int x, int y)
{
if (l >= x) {
addTagB(k, y);
return;
}
if (r < x) {
return;
}
pushdown(k);
int mid = (l + r) >> 1;
modifyB(k << 1, l, mid, x, y);
modifyB(k << 1 | 1, mid + 1, r, x, y);
tie(MxA[k], MxB[k], S[k]) = tuple<LL, LL, LL>(MxA[k << 1], MxB[k << 1], S[k << 1]) +
tuple<LL, LL, LL>(MxA[k << 1 | 1], MxB[k << 1 | 1], S[k << 1 | 1]);
return;
}
inline void modify(int type, int x, int y)
{
if (!type) {
modifyA(1, 1, len, x, y);
} else {
modifyB(1, 1, len, x, y);
}
return;
}
} SEG3[N];
inline long long calc(int wh, int L = 0, int R = 0)
{
if (!L) {
L = 1, R = min(wh * C, n) - (wh - 1) * C;
} else {
L -= (wh - 1) * C, R -= (wh - 1) * C;
}
long long A, B, C;
tie(A, B, C) = SEG3[wh].query(1, 1, SEG3[wh].len, L, R);
return C;
}
signed main()
{
fread(I, 1, 22000038, stdin);
n = read(), m = read(), C = read();
bl = n / C + 1;
for (int i = 1; i <= n; ++i) {
a[i] = read();
}
SEG1::build();
for (int i = 2; i <= bl - 1; ++i) {
long long s = 0, mx = 0;
for (int j = (i - 1) * C + 1; j <= i * C && j <= n; ++j) {
mx = max(mx, s = max(s, 0ll) + a[j]);
}
glo1[i] = mx;
}
for (int i = 1; i <= bl - 1; ++i) {
SEG3[i].len = min((i + 1) * C, n) - i * C;
for (int j = C; j; --j) {
Sa[j] = Sa[j + 1] + a[j + (i - 1) * C];
}
for (int j = 1; j <= SEG3[i].len; ++j) {
Sb[j] = Sb[j - 1] + a[j + i * C];
}
SEG3[i].Build();
}
for (int i = 2; i <= bl - 2; ++i) {
glo2[i] = calc(i);
}
SEG2::build();
while (m--) {
int opt = read(), L = read(), R = read();
if (opt == 1) {
if (a[L] == R) {
continue;
}
int D = R - a[L];
a[L] = R;
SEG1::modify(L);
int bel = (L - 1) / C + 1, flg = max(glo1[bel], glo2[bel]);
if (bel >= 2 && bel <= bl - 1) {
glo1[bel] = SEG1::query((bel - 1) * C + 1, min(bel * C, n));
}
if (bel >= 2) {
SEG3[bel - 1].modify(1, L - (bel - 1) * C, D);
}
if (bel <= bl - 1) {
SEG3[bel].modify(0, L - (bel - 1) * C, D);
}
if (bel >= 3) {
int tv = max(glo1[bel - 1], glo2[bel - 1]);
glo2[bel - 1] = calc(bel - 1);
if (max(glo1[bel - 1], glo2[bel - 1]) != tv) {
SEG2::modify(bel - 1);
}
}
if (bel <= bl - 2) {
glo2[bel] = calc(bel);
}
if (flg != max(glo1[bel], glo2[bel])) {
SEG2::modify(bel);
}
} else {
if (R - L + 1 <= C) {
print(SEG1::query(L, R));
*o++ = '\n';
continue;
}
int bel = (L - 1) / C + 1, ber = (R - 1) / C + 1;
long long res = (bel + 2 >= ber ? 0ll : SEG2::query(bel + 1, ber - 2));
if (bel + 1 != ber) {
res = max(res, glo1[ber - 1]);
}
res = max({res, SEG1::query(L, L + C - 1), SEG1::query(R - C + 1, R)});
if (ber == bel + 1) {
res = max(res, calc(bel, L, R - C));
} else {
res = max({res, calc(bel, L, bel * C), calc(ber - 1, (ber - 2) * C + 1, R - C)});
}
print(res);
*o++ = '\n';
}
}
fwrite(O, 1, o - O, stdout);
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 36040kb
input:
5 6 3 0 -5 -3 8 -3 2 3 5 1 2 5 2 1 5 1 4 -3 2 3 5 2 1 5
output:
8 10 0 5
result:
ok 4 number(s): "8 10 0 5"
Test #2:
score: -100
Memory Limit Exceeded
input:
200000 500000 1 387060158 961744470 37167782 737122872 -532977662 1604246 -30977399 871848791 444997246 454204578 -813187501 -660394286 448014171 -835115276 -631880452 887715308 258530352 805589560 -414653327 -156732249 -335096199 -80266237 367896009 738406627 -903652056 446120866 415658444 -1347916...