QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#380374#8566. Can We Still Qualify For Semifinals?ucup-team1134#AC ✓2ms3884kbC++2314.2kb2024-04-07 02:16:372024-04-07 02:16:38

Judging History

你现在查看的是最新测评结果

  • [2024-04-07 02:16:38]
  • 评测
  • 测评结果:AC
  • 用时:2ms
  • 内存:3884kb
  • [2024-04-07 02:16:37]
  • 提交

answer

#include <bits/stdc++.h>
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=1<<30;

// フローのみ

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
    namespace internal {
        template <class T> struct simple_queue {
            std::vector<T> payload;
            int pos = 0;
            void reserve(int n) { payload.reserve(n); }
            int size() const { return int(payload.size()) - pos; }
            bool empty() const { return pos == int(payload.size()); }
            void push(const T& t) { payload.push_back(t); }
            T& front() { return payload[pos]; }
            void clear() {
                payload.clear();
                pos = 0;
            }
            void pop() { pos++; }
        };
    }  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_QUEUE_HPP

#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
    template <class Cap> struct mf_graph {
    public:
        mf_graph() : _n(0) {}
        mf_graph(int n) : _n(n), g(n) {}
        int add_edge(int from, int to, Cap cap) {
            assert(0 <= from && from < _n);
            assert(0 <= to && to < _n);
            assert(0 <= cap);
            int m = int(pos.size());
            pos.push_back({from, int(g[from].size())});
            g[from].push_back(_edge{to, int(g[to].size()), cap});
            g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
            return m;
        }
        struct edge {
            int from, to;
            Cap cap, flow;
        };
        edge get_edge(int i) {
            int m = int(pos.size());
            assert(0 <= i && i < m);
            auto _e = g[pos[i].first][pos[i].second];
            auto _re = g[_e.to][_e.rev];
            return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
        }
        std::vector<edge> edges() {
            int m = int(pos.size());
            std::vector<edge> result;
            for (int i = 0; i < m; i++) {
                result.push_back(get_edge(i));
            }
            return result;
        }
        void change_edge(int i, Cap new_cap, Cap new_flow) {
            int m = int(pos.size());
            assert(0 <= i && i < m);
            assert(0 <= new_flow && new_flow <= new_cap);
            auto& _e = g[pos[i].first][pos[i].second];
            auto& _re = g[_e.to][_e.rev];
            _e.cap = new_cap - new_flow;
            _re.cap = new_flow;
        }
        Cap flow(int s, int t) {
            return flow(s, t, std::numeric_limits<Cap>::max());
        }
        Cap flow(int s, int t, Cap flow_limit) {
            assert(0 <= s && s < _n);
            assert(0 <= t && t < _n);
            std::vector<int> level(_n), iter(_n);
            internal::simple_queue<int> que;
            auto bfs = [&]() {
                std::fill(level.begin(), level.end(), -1);
                level[s] = 0;
                que.clear();
                que.push(s);
                while (!que.empty()) {
                    int v = que.front();
                    que.pop();
                    for (auto e : g[v]) {
                        if (e.cap == 0 || level[e.to] >= 0) continue;
                        level[e.to] = level[v] + 1;
                        if (e.to == t) return;
                        que.push(e.to);
                    }
                }
            };
            auto dfs = [&](auto self, int v, Cap up) {
                if (v == s) return up;
                Cap res = 0;
                int level_v = level[v];
                for (int& i = iter[v]; i < int(g[v].size()); i++) {
                    _edge& e = g[v][i];
                    if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                    Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                    if (d <= 0) continue;
                    g[v][i].cap += d;
                    g[e.to][e.rev].cap -= d;
                    res += d;
                    if (res == up) break;
                }
                return res;
            };
            Cap flow = 0;
            while (flow < flow_limit) {
                bfs();
                if (level[t] == -1) break;
                std::fill(iter.begin(), iter.end(), 0);
                while (flow < flow_limit) {
                    Cap f = dfs(dfs, t, flow_limit - flow);
                    if (!f) break;
                    flow += f;
                }
            }
            return flow;
        }
        std::vector<bool> min_cut(int s) {
            std::vector<bool> visited(_n);
            internal::simple_queue<int> que;
            que.push(s);
            while (!que.empty()) {
                int p = que.front();
                que.pop();
                visited[p] = true;
                for (auto e : g[p]) {
                    if (e.cap && !visited[e.to]) {
                        visited[e.to] = true;
                        que.push(e.to);
                    }
                }
            }
            return visited;
        }
    private:
        int _n;
        struct _edge {
            int to, rev;
            Cap cap;
        };
        std::vector<std::pair<int, int>> pos;
        std::vector<std::vector<_edge>> g;
    };
}  // namespace atcoder
#endif  // ATCODER_MAXFLOW_HPP
#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
    template <class Cap, class Cost> struct mcf_graph {
    public:
        mcf_graph() {}
        mcf_graph(int n) : _n(n), g(n) {}
        int add_edge(int from, int to, Cap cap, Cost cost) {
            assert(0 <= from && from < _n);
            assert(0 <= to && to < _n);
            int m = int(pos.size());
            pos.push_back({from, int(g[from].size())});
            g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
            g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
            return m;
        }
        struct edge {
            int from, to;
            Cap cap, flow;
            Cost cost;
        };
        edge get_edge(int i) {
            int m = int(pos.size());
            assert(0 <= i && i < m);
            auto _e = g[pos[i].first][pos[i].second];
            auto _re = g[_e.to][_e.rev];
            return edge{
                pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
            };
        }
        std::vector<edge> edges() {
            int m = int(pos.size());
            std::vector<edge> result(m);
            for (int i = 0; i < m; i++) {
                result[i] = get_edge(i);
            }
            return result;
        }
        std::pair<Cap, Cost> flow(int s, int t) {
            return flow(s, t, std::numeric_limits<Cap>::max());
        }
        std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
            return slope(s, t, flow_limit).back();
        }
        std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
            return slope(s, t, std::numeric_limits<Cap>::max());
        }
        std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
            assert(0 <= s && s < _n);
            assert(0 <= t && t < _n);
            assert(s != t);
            // variants (C = maxcost):
            // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
            // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
            std::vector<Cost> dual(_n, 0), dist(_n);
            std::vector<int> pv(_n), pe(_n);
            std::vector<bool> vis(_n);
            auto dual_ref = [&]() {
                std::fill(dist.begin(), dist.end(),
                          std::numeric_limits<Cost>::max());
                std::fill(pv.begin(), pv.end(), -1);
                std::fill(pe.begin(), pe.end(), -1);
                std::fill(vis.begin(), vis.end(), false);
                struct Q {
                    Cost key;
                    int to;
                    bool operator<(Q r) const { return key > r.key; }
                };
                std::priority_queue<Q> que;
                dist[s] = 0;
                que.push(Q{0, s});
                while (!que.empty()) {
                    int v = que.top().to;
                    que.pop();
                    if (vis[v]) continue;
                    vis[v] = true;
                    if (v == t) break;
                    // dist[v] = shortest(s, v) + dual[s] - dual[v]
                    // dist[v] >= 0 (all reduced cost are positive)
                    // dist[v] <= (n-1)C
                    for (int i = 0; i < int(g[v].size()); i++) {
                        auto e = g[v][i];
                        if (vis[e.to] || !e.cap) continue;
                        // |-dual[e.to] + dual[v]| <= (n-1)C
                        // cost <= C - -(n-1)C + 0 = nC
                        Cost cost = e.cost - dual[e.to] + dual[v];
                        if (dist[e.to] - dist[v] > cost) {
                            dist[e.to] = dist[v] + cost;
                            pv[e.to] = v;
                            pe[e.to] = i;
                            que.push(Q{dist[e.to], e.to});
                        }
                    }
                }
                if (!vis[t]) {
                    return false;
                }
                for (int v = 0; v < _n; v++) {
                    if (!vis[v]) continue;
                    // dual[v] = dual[v] - dist[t] + dist[v]
                    //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                    //         = - shortest(s, t) + dual[t] + shortest(s, v)
                    //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                    dual[v] -= dist[t] - dist[v];
                }
                return true;
            };
            Cap flow = 0;
            Cost cost = 0, prev_cost = -1;
            std::vector<std::pair<Cap, Cost>> result;
            result.push_back({flow, cost});
            while (flow < flow_limit) {
                if (!dual_ref()) break;
                Cap c = flow_limit - flow;
                for (int v = t; v != s; v = pv[v]) {
                    c = std::min(c, g[pv[v]][pe[v]].cap);
                }
                for (int v = t; v != s; v = pv[v]) {
                    auto& e = g[pv[v]][pe[v]];
                    e.cap -= c;
                    g[v][e.rev].cap += c;
                }
                Cost d = -dual[s];
                flow += c;
                cost += c * d;
                if (prev_cost == d) {
                    result.pop_back();
                }
                result.push_back({flow, cost});
                prev_cost = d;
            }
            return result;
        }
    private:
        int _n;
        struct _edge {
            int to, rev;
            Cap cap;
            Cost cost;
        };
        std::vector<std::pair<int, int>> pos;
        std::vector<std::vector<_edge>> g;
    };
}  // namespace atcoder
#endif  // ATCODER_MINCOSTFLOW_HPP

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    vector<pair<int,int>> S;
    vector<int> X(10);iota(all(X),0);
    for(int q=0;q<9;q++){
        for(int i=0;i<5;i++) S.push_back(mp(X[i],X[9-i]));
        rotate(X.begin()+1,X.begin()+9,X.end());
    }
    int Q;cin>>Q;
    while(Q--){
        int N;cin>>N;
        string SS;cin>>SS;
        bool ans=false;
        vector<int> def(10);
        for(int i=0;i<si(SS);i++){
            if(SS[i]=='1'){
                def[S[i].fi]++;
            }else{
                def[S[i].se]++;
            }
        }
        
        for(int a=1;a<10;a++){
            for(int b=a+1;b<10;b++){
                for(int c=b+1;c<10;c++){
                    auto sc=def;
                    vector<pair<int,int>> E;
                    for(int i=N;i<45;i++){
                        auto [x,y]=S[i];
                        if(x==0||y==0) sc[0]++;
                        else if(x==a||x==b||x==c) sc[x]++;
                        else if(y==a||y==b||y==c) sc[y]++;
                        else{
                            E.push_back(mp(x,y));
                        }
                    }
                    
                    atcoder::mf_graph<int> G(si(E)+10+2);
                    int s=si(E)+10,t=s+1;
                    for(int i=0;i<si(E);i++){
                        G.add_edge(s,i,1);
                        G.add_edge(i,si(E)+E[i].fi,1);
                        G.add_edge(i,si(E)+E[i].se,1);
                    }
                    for(int i=0;i<10;i++){
                        if(i==a||i==b||i==c||i==0) continue;
                        G.add_edge(si(E)+i,t,max(0,sc[0]-sc[i]));
                    }
                    
                    bool f=true;
                    if(G.flow(s,t)<si(E)) f=false;
                    for(int i=0;i<10;i++){
                        if(i==a||i==b||i==c||i==0) continue;
                        if(sc[i]>sc[0]) f=false;
                    }
                    
                    ans|=f;
                    
                    if(ans) break;
                }
                if(ans) break;
            }
            if(ans) break;
        }
        
        if(ans) cout<<"YES\n";
        else cout<<"NO\n";
    }
}


Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3648kb

input:

3
3
111
25
1000010101111111111010100
35
01111011110111101111011110111101111

output:

YES
YES
NO

result:

ok 3 token(s): yes count is 2, no count is 1

Test #2:

score: 0
Accepted
time: 1ms
memory: 3576kb

input:

10
16
0110000001010100
17
01111000110110101
15
001100010101111
16
0010101010011100
19
0000000100010110100
16
0011101010011100
18
011110010001100000
18
000110101001100011
20
01100010000100100100
15
001000111001101

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

result:

ok 10 token(s): yes count is 10, no count is 0

Test #3:

score: 0
Accepted
time: 2ms
memory: 3884kb

input:

10
37
0110000001010100011101001011100110001
39
000100111101101001100101101000000000100
35
00111000100111100101011010111100100
33
010000010001110010110001101110001
30
000100010100000010010110101010
31
0000101000011010101001010000000
44
00001000000111101011010110000101100011000100
42
01111011110001001...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #4:

score: 0
Accepted
time: 1ms
memory: 3652kb

input:

10
23
01100000010101000111010
38
01111001100011000101011110101001101001
27
010000000001001001110001001
26
01101001110011101101000110
8
00001000
22
0110100110001110110001
9
000100010
24
000000100101101010100100
6
011000
29
01101010100101000000000000100

output:

YES
NO
NO
NO
YES
YES
YES
YES
YES
NO

result:

ok 10 token(s): yes count is 6, no count is 4

Test #5:

score: 0
Accepted
time: 1ms
memory: 3584kb

input:

10
30
011000000101010001110100101110
29
01001010010011101110010110010
28
0110000000001000101101001001
23
01101001110011101101000
23
01000001000111001011000
24
011110001000010001010000
23
01001011010101001000011
30
000110011001010010000000000010
24
000110111001110011000011
28
000110001000011011110110...

output:

NO
NO
NO
YES
YES
YES
YES
NO
YES
NO

result:

ok 10 token(s): yes count is 5, no count is 5

Test #6:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

10
21
011000000101010001110
21
000110110101001010010
22
0111101101001100101101
24
000000001000101011000101
21
011010011100111011010
20
00110000010001101010
21
010010111100010000100
24
010100000100011010110010
23
00001010000110101010010
25
0000000000001000001101110

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

result:

ok 10 token(s): yes count is 10, no count is 0

Test #7:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

10
26
01100000010101000111010010
26
01101010010100100111011100
26
00110010110100000000010010
27
011100010101110010110101101
30
010100011000001000110101001100
30
011110001000010001010000001001
28
0101100101000010100001101010
26
00101000000000000100000110
28
0110101101010000111000110001
27
00011011110...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #8:

score: 0
Accepted
time: 2ms
memory: 3636kb

input:

10
25
0010100010011010111001111
26
01001010100010101010001010
26
01111001110000100111011110
26
10001000100110101110011110
26
10101010100110101110011110
27
110100010101010011010111001
27
101010101001101011100111101
31
1000010001010100110001011011110
37
1000101111000100110000011000000100101
40
1000101...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #9:

score: 0
Accepted
time: 2ms
memory: 3644kb

input:

10
26
00001010000000000000000000
26
00000010000000000000000000
26
01101010100010101011011110
26
00011011110111101111011110
27
001100110101011001110111101
27
000110111101111011110111101
28
0110001001000010011101111011
29
01000000010001101000011110111
29
01000000010000101101011110111
30
01000011110111...

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
NO

result:

ok 10 token(s): yes count is 9, no count is 1

Test #10:

score: 0
Accepted
time: 1ms
memory: 3600kb

input:

10
1
0
2
00
10
0001101110
14
00101010000011
20
00000010010100101010
25
0000000101000100100001111
35
01110011010000101010000010010000100
40
0000100110001110101100001001000110000001
44
01011010110010101110011000010001010011100011
45
010010001001010011110111101011011000000100001

output:

YES
YES
YES
YES
YES
YES
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 6, no count is 4

Extra Test:

score: 0
Extra Test Passed