QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#379492#8568. Expected Diameterucup-team180#AC ✓2046ms52880kbC++1786.7kb2024-04-06 17:40:302024-04-06 17:40:32

Judging History

你现在查看的是最新测评结果

  • [2024-04-06 17:40:32]
  • 评测
  • 测评结果:AC
  • 用时:2046ms
  • 内存:52880kb
  • [2024-04-06 17:40:30]
  • 提交

answer

#pragma region Macros
#ifdef noimi
#pragma comment(linker, "/stack:256000000")
#include "my_template.hpp"
#else
// #pragma GCC target("avx2")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>

#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif

#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))

using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
    vi a(n);
    return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
    vi res(a.size());
    iota(res.begin(), res.end(), 0);
    sort(res.begin(), res.end(), [&](int i, int j) {
        if(greater) return a[i] > a[j];
        return a[i] < a[j];
    });
    return res;
}

// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)                                                                                                                         \
    vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};

namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;

#define INT(...)                                                                                                                                               \
    int __VA_ARGS__;                                                                                                                                           \
    IN(__VA_ARGS__)
#define INTd(...)                                                                                                                                              \
    int __VA_ARGS__;                                                                                                                                           \
    IN2(__VA_ARGS__)
#define LL(...)                                                                                                                                                \
    ll __VA_ARGS__;                                                                                                                                            \
    IN(__VA_ARGS__)
#define LLd(...)                                                                                                                                               \
    ll __VA_ARGS__;                                                                                                                                            \
    IN2(__VA_ARGS__)
#define STR(...)                                                                                                                                               \
    string __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define CHR(...)                                                                                                                                               \
    char __VA_ARGS__;                                                                                                                                          \
    IN(__VA_ARGS__)
#define DBL(...)                                                                                                                                               \
    double __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define VEC(type, name, size)                                                                                                                                  \
    vector<type> name(size);                                                                                                                                   \
    IN(name)
#define VECd(type, name, size)                                                                                                                                 \
    vector<type> name(size);                                                                                                                                   \
    IN2(name)
#define VEC2(type, name1, name2, size)                                                                                                                         \
    vector<type> name1(size), name2(size);                                                                                                                     \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size)                                                                                                                        \
    vector<type> name1(size), name2(size);                                                                                                                     \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size)                                                                                                                  \
    vector<type> name1(size), name2(size), name3(size);                                                                                                        \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size)                                                                                                                 \
    vector<type> name1(size), name2(size), name3(size);                                                                                                        \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size)                                                                                                           \
    vector<type> name1(size), name2(size), name3(size), name4(size);                                                                                           \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size)                                                                                                          \
    vector<type> name1(size), name2(size), name3(size), name4(size);                                                                                           \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w)                                                                                                                                   \
    vector<vector<type>> name(h, vector<type>(w));                                                                                                             \
    IN(name)
#define VVd(type, name, h, w)                                                                                                                                  \
    vector<vector<type>> name(h, vector<type>(w));                                                                                                             \
    IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
    for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
    scan(head);
    IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
    scan(head);
    --head;
    IN2(tail...);
}

template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
    h += p;
    pat<p>(tail...);
}

template <typename T, typename S> T ceil(T x, S y) {
    assert(y);
    return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}

template <typename T, typename S> T floor(T x, S y) {
    assert(y);
    return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
    if(x < 0 and y < 0) return bigmul(-x, -y, lim);
    if(x < 0) return -bigmul(-x, y, lim);
    if(y < 0) return -bigmul(x, -y, lim);
    return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
    T res = 1;
    for(; n; n >>= 1, x *= x)
        if(n & 1) res *= x;
    return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
    T res = 1;
    x %= mod;
    for(; n; n >>= 1, x = x * x % mod)
        if(n & 1) res = res * x % mod;
    return res;
}
vector<pll> factor(ll x) {
    vector<pll> ans;
    for(ll i = 2; i * i <= x; i++)
        if(x % i == 0) {
            ans.push_back({i, 1});
            while((x /= i) % i == 0) ans.back().second++;
        }
    if(x != 1) ans.push_back({x, 1});
    return ans;
}
template <class T> vector<T> divisor(T x) {
    vector<T> ans;
    for(T i = 1; i * i <= x; i++)
        if(x % i == 0) {
            ans.pb(i);
            if(i * i != x) ans.pb(x / i);
        }
    return ans;
}
template <typename T> void zip(vector<T> &x) {
    vector<T> y = x;
    UNIQUE(y);
    for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
    for(auto e : a) v.emplace_back(e);
    fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
    for(auto &&e : a) e = lb(v, e);
    renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
    vector<S> v;
    fold_in(v, head, args...);
    sort(all(v)), v.erase(unique(all(v)), v.end());
    renumber(v, head, args...);
    return v;
}

template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
    vector<T> w(v.size());
    rep(i, si(id)) w[i] = v[id[i]];
    v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
    rearrange_exec(id, a);
    rearrange(id, tail...);
}

template <typename T> vector<T> RUI(const vector<T> &v) {
    vector<T> res(v.size() + 1);
    for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
    return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}

template <typename T> void zeta_subsetsum(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
    if(empty(v)) return;
    int n = v.size(), m = v[0].size();
    vector<vector<T>> res(m, vector<T>(n));
    rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
    v.swap(res);
}

vector<int> counter(const vector<int> &v, int max_num = -1) {
    if(max_num == -1) max_num = MAX(v);
    vector<int> res(max_num + 1);
    fore(e, v) res[e]++;
    return res;
}

// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }

// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i)       // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
// int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ull a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
    uint64_t m1 = 0x5555555555555555ll;
    uint64_t m2 = 0x3333333333333333ll;
    uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
    uint64_t h01 = 0x0101010101010101ll;

    x -= (x >> 1) & m1;
    x = (x & m2) + ((x >> 2) & m2);
    x = (x + (x >> 4)) & m4;

    return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }

ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
    static mt19937_64 gen;
#else
    static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
    return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }

template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }

int in() {
    int x;
    cin >> x;
    return x;
}
ll lin() {
    unsigned long long x;
    cin >> x;
    return x;
}

template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }

template <class T> vector<T> &operator++(vector<T> &v) {
    fore(e, v) e++;
    return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
    auto res = v;
    fore(e, v) e++;
    return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
    fore(e, v) e--;
    return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
    auto res = v;
    fore(e, v) e--;
    return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
    vector<T> res(max(si(l), si(r)));
    rep(i, si(l)) res[i] += l[i];
    rep(i, si(r)) res[i] += r[i];
    return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
    vector<T> res(max(si(l), si(r)));
    rep(i, si(l)) res[i] += l[i];
    rep(i, si(r)) res[i] -= r[i];
    return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
    if(si(l) < si(r)) l.resize(si(r));
    rep(i, si(r)) l[i] += r[i];
    return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
    if(si(l) < si(r)) l.resize(si(r));
    rep(i, si(r)) l[i] -= r[i];
    return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
    fore(e, v) e += x;
    return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
    fore(e, v) e -= x;
    return v;
}

template <typename T> struct edge {
    int from, to;
    T cost;
    int id;
    edge(int to, T cost) : from(-1), to(to), cost(cost) {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
    constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
    edge &operator=(const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;

template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
    Edges<T> res;
    res.reserve(m);
    for(int i = 0; i < m; i++) {
        int u, v, c = 0;
        scan(u), scan(v), u--, v--;
        if(weighted) scan(c);
        res.eb(u, v, c, i);
    }
    return res;
}

using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
    Tree res(n);
    if(m == -1) m = n - 1;
    while(m--) {
        int a, b;
        cin >> a >> b;
        a -= margin, b -= margin;
        res[a].emplace_back(b);
        if(!directed) res[b].emplace_back(a);
    }
    return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
    Graph res(n);
    for(int i = 1; i < n; i++) {
        int a;
        cin >> a;
        res[a - margin].emplace_back(i);
    }
    return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
    Wgraph<T> res(n);
    if(m == -1) m = n - 1;
    while(m--) {
        int a, b;
        T c;
        scan(a), scan(b), scan(c);
        a -= margin, b -= margin;
        res[a].emplace_back(b, c);
        if(!directed) res[b].emplace_back(a, c);
    }
    return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }

#define TEST                                                                                                                                                   \
    INT(testcases);                                                                                                                                            \
    while(testcases--)

i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
    string s;
    is >> s;
    v = 0;
    for(int i = 0; i < (int)s.size(); i++) {
        if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
    }
    if(s[0] == '-') { v *= -1; }
    return is;
}

ostream &operator<<(ostream &os, const i128 &v) {
    if(v == 0) { return (os << "0"); }
    i128 num = v;
    if(v < 0) {
        os << '-';
        num = -num;
    }
    string s;
    for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
    reverse(s.begin(), s.end());
    return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
    static void output(std::ostream &os, const T &v) {
        os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
        tp<T, N + 1, L>::output(os, v);
    }
};
template <typename T, unsigned N> struct tp<T, N, N> {
    static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
    if(&os == &cerr) { os << '('; }
    aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
    if(&os == &cerr) { os << ')'; }
    return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
    auto pq = _pq;
    vector<T> res;
    while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
    return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
    if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
    return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
    bool f = true;
    if(&os == &cerr) os << "[";
    for(auto &y : x) {
        if(&os == &cerr)
            os << (f ? "" : ", ") << y;
        else
            os << (f ? "" : " ") << y;
        f = false;
    }
    if(&os == &cerr) os << "]";
    return os;
}

#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)

void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
    cout << head;
    if(sizeof...(tail)) cout << ' ';
    OUT(tail...);
}

template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};

template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
    fore(e, v) if(e == INF) e = res;
    OUT(v);
    fore(e, v) if(e == res) e = INF;
}

template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};

template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
    vector<pair<S, int>> res;
    for(auto &e : v) {
        if(res.empty() or res.back().fi != e)
            res.eb(e, 1);
        else
            res.back().se++;
    }
    return res;
}
vector<pair<char, int>> runLength(const string &v) {
    vector<pair<char, int>> res;
    for(auto &e : v) {
        if(res.empty() or res.back().fi != e)
            res.eb(e, 1);
        else
            res.back().se++;
    }
    return res;
}

struct string_converter {
    char start = 0;
    char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
    int convert(const char &c) {
        if(!start) start = type(c);
        return c - start;
    }
    int convert(const char &c, const string &chars) { return chars.find(c); }
    template <typename T> auto convert(const T &v) {
        vector<decltype(convert(v[0]))> ret;
        ret.reserve(size(v));
        for(auto &&e : v) ret.emplace_back(convert(e));
        return ret;
    }
    template <typename T> auto convert(const T &v, const string &chars) {
        vector<decltype(convert(v[0], chars))> ret;
        ret.reserve(size(v));
        for(auto &&e : v) ret.emplace_back(convert(e, chars));
        return ret;
    }
    int operator()(const char &v, char s = 0) {
        start = s;
        return convert(v);
    }
    int operator()(const char &v, const string &chars) { return convert(v, chars); }
    template <typename T> auto operator()(const T &v, char s = 0) {
        start = s;
        return convert(v);
    }
    template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;

template <class T, class F> T bin_search(T ok, T ng, const F &f) {
    while(abs(ok - ng) > 1) {
        T mid = ok + ng >> 1;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
    while(iter--) {
        T mid = (ok + ng) / 2;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}

struct Setup_io {
    Setup_io() {
        ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
        cout << fixed << setprecision(11);
    }
} setup_io;

#endif

#pragma endregion
namespace Modular998 {
#line 1 "a.cpp"

#line 2 "library/fps/berlekamp-massey.hpp"

template <typename mint> vector<mint> BerlekampMassey(const vector<mint> &s) {
    const int N = (int)s.size();
    vector<mint> b, c;
    b.reserve(N + 1);
    c.reserve(N + 1);
    b.push_back(mint(1));
    c.push_back(mint(1));
    mint y = mint(1);
    for(int ed = 1; ed <= N; ed++) {
        int l = int(c.size()), m = int(b.size());
        mint x = 0;
        for(int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
        b.emplace_back(mint(0));
        m++;
        if(x == mint(0)) continue;
        mint freq = x / y;
        if(l < m) {
            auto tmp = c;
            c.insert(begin(c), m - l, mint(0));
            for(int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
            b = tmp;
            y = x;
        } else {
            for(int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
        }
    }
    reverse(begin(c), end(c));
    return c;
}

#line 2 "library/modulo/binomial.hpp"

template <typename T> struct Binomial {
    vector<T> f, g, h;
    Binomial(int MAX = 0) : f(1, T(1)), g(1, T(1)), h(1, T(1)) {
        while(MAX >= (int)f.size()) extend();
    }

    void extend() {
        int n = f.size();
        int m = n * 2;
        f.resize(m);
        g.resize(m);
        h.resize(m);
        for(int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
        g[m - 1] = f[m - 1].inverse();
        h[m - 1] = g[m - 1] * f[m - 2];
        for(int i = m - 2; i >= n; i--) {
            g[i] = g[i + 1] * T(i + 1);
            h[i] = g[i] * f[i - 1];
        }
    }

    T fac(int i) {
        if(i < 0) return T(0);
        while(i >= (int)f.size()) extend();
        return f[i];
    }

    T finv(int i) {
        if(i < 0) return T(0);
        while(i >= (int)g.size()) extend();
        return g[i];
    }

    T inv(int i) {
        if(i < 0) return -inv(-i);
        while(i >= (int)h.size()) extend();
        return h[i];
    }

    T C(int n, int r) {
        if(n < 0 || n < r || r < 0) return T(0);
        return fac(n) * finv(n - r) * finv(r);
    }

    inline T operator()(int n, int r) { return C(n, r); }

    template <typename I> T multinomial(const vector<I> &r) {
        static_assert(is_integral<I>::value == true);
        int n = 0;
        for(auto &x : r) {
            if(x < 0) return T(0);
            n += x;
        }
        T res = fac(n);
        for(auto &x : r) res *= finv(x);
        return res;
    }

    template <typename I> T operator()(const vector<I> &r) { return multinomial(r); }

    T C_naive(int n, int r) {
        if(n < 0 || n < r || r < 0) return T(0);
        T ret = T(1);
        r = min(r, n - r);
        for(int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
        return ret;
    }

    T P(int n, int r) {
        if(n < 0 || n < r || r < 0) return T(0);
        return fac(n) * finv(n - r);
    }

    T H(int n, int r) {
        if(n < 0 || r < 0) return T(0);
        return r == 0 ? 1 : C(n + r - 1, r);
    }
};

#line 2 "library/modint/montgomery-modint.hpp"

template <uint32_t mod> struct LazyMontgomeryModInt {
    using mint = LazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static constexpr u32 get_r() {
        u32 ret = mod;
        for(i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static constexpr u32 r = get_r();
    static constexpr u32 n2 = -u64(mod) % mod;
    static_assert(r * mod == 1, "invalid, r * mod != 1");
    static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
    static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

    u32 a;

    constexpr LazyMontgomeryModInt() : a(0) {}
    constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){};

    static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; }

    constexpr mint &operator+=(const mint &b) {
        if(i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator-=(const mint &b) {
        if(i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator*=(const mint &b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    constexpr mint &operator/=(const mint &b) {
        *this *= b.inverse();
        return *this;
    }

    constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
    constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
    constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
    constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
    constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); }
    constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); }
    constexpr mint operator-() const { return mint() - mint(*this); }

    constexpr mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    constexpr mint inverse() const { return pow(mod - 2); }

    friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); }

    friend istream &operator>>(istream &is, mint &b) {
        int64_t t;
        is >> t;
        b = LazyMontgomeryModInt<mod>(t);
        return (is);
    }

    constexpr u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static constexpr u32 get_mod() { return mod; }
};
#line 2 "library/fps/ntt-friendly-fps.hpp"

#line 2 "library/ntt/ntt-avx2.hpp"

#line 2 "library/modint/simd-montgomery.hpp"

#include <immintrin.h>

__attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32(const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); }

__attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32(const __m128i &a, const __m128i &b) {
    __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
    __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
    __m128i prod02 = _mm_mul_epu32(a, b);
    __m128i prod13 = _mm_mul_epu32(a13, b13);
    __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13), _mm_unpackhi_epi32(prod02, prod13));
    return prod;
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128(const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) {
    return _mm_sub_epi32(_mm_add_epi32(my128_mulhi_epu32(a, b), m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_add_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
    __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
    return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
    __m128i ret = _mm_sub_epi32(a, b);
    return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("avx2"))) inline __m256i my256_mullo_epu32(const __m256i &a, const __m256i &b) { return _mm256_mullo_epi32(a, b); }

__attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32(const __m256i &a, const __m256i &b) {
    __m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
    __m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
    __m256i prod02 = _mm256_mul_epu32(a, b);
    __m256i prod13 = _mm256_mul_epu32(a13, b13);
    __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13), _mm256_unpackhi_epi32(prod02, prod13));
    return prod;
}

__attribute__((target("avx2"))) inline __m256i montgomery_mul_256(const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) {
    return _mm256_sub_epi32(_mm256_add_epi32(my256_mulhi_epu32(a, b), m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}

__attribute__((target("avx2"))) inline __m256i montgomery_add_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
    __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
    return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("avx2"))) inline __m256i montgomery_sub_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
    __m256i ret = _mm256_sub_epi32(a, b);
    return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret);
}
#line 4 "library/ntt/ntt-avx2.hpp"

namespace ntt_inner {
using u64 = uint64_t;
constexpr uint32_t get_pr(uint32_t mod) {
    if(mod == 2) return 1;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = mod - 1;
    for(u64 i = 2; i * i <= m; ++i) {
        if(m % i == 0) {
            ds[idx++] = i;
            while(m % i == 0) m /= i;
        }
    }
    if(m != 1) ds[idx++] = m;

    uint32_t pr = 2;
    while(1) {
        int flg = 1;
        for(int i = 0; i < idx; ++i) {
            u64 a = pr, b = (mod - 1) / ds[i], r = 1;
            while(b) {
                if(b & 1) r = r * a % mod;
                a = a * a % mod;
                b >>= 1;
            }
            if(r == 1) {
                flg = 0;
                break;
            }
        }
        if(flg == 1) break;
        ++pr;
    }
    return pr;
}

constexpr int SZ_FFT_BUF = 1 << 23;
uint32_t _buf1[SZ_FFT_BUF] __attribute__((aligned(64)));
uint32_t _buf2[SZ_FFT_BUF] __attribute__((aligned(64)));
} // namespace ntt_inner

template <typename mint> struct NTT {
    static constexpr uint32_t mod = mint::get_mod();
    static constexpr uint32_t pr = ntt_inner::get_pr(mint::get_mod());
    static constexpr int level = __builtin_ctzll(mod - 1);
    mint dw[level], dy[level];
    mint *buf1, *buf2;

    constexpr NTT() {
        setwy(level);
        union raw_cast {
            mint dat;
            uint32_t _;
        };
        buf1 = &(((raw_cast *)(ntt_inner::_buf1))->dat);
        buf2 = &(((raw_cast *)(ntt_inner::_buf2))->dat);
    }

    constexpr void setwy(int k) {
        mint w[level], y[level];
        w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
        y[k - 1] = w[k - 1].inverse();
        for(int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
        dw[0] = dy[0] = w[1] * w[1];
        dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
        for(int i = 3; i < k; ++i) {
            dw[i] = dw[i - 1] * y[i - 2] * w[i];
            dy[i] = dy[i - 1] * w[i - 2] * y[i];
        }
    }

    __attribute__((target("avx2"))) void ntt(mint *a, int n) {
        int k = n ? __builtin_ctz(n) : 0;
        if(k == 0) return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        if(k & 1) {
            int v = 1 << (k - 1);
            if(v < 8) {
                for(int j = 0; j < v; ++j) {
                    mint ajv = a[j + v];
                    a[j + v] = a[j] - ajv;
                    a[j] += ajv;
                }
            } else {
                const __m256i m0 = _mm256_set1_epi32(0);
                const __m256i m2 = _mm256_set1_epi32(mod + mod);
                int j0 = 0;
                int j1 = v;
                for(; j0 < v; j0 += 8, j1 += 8) {
                    __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                    __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                    __m256i naj = montgomery_add_256(T0, T1, m2, m0);
                    __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
                    _mm256_storeu_si256((__m256i *)(a + j0), naj);
                    _mm256_storeu_si256((__m256i *)(a + j1), najv);
                }
            }
        }
        int u = 1 << (2 + (k & 1));
        int v = 1 << (k - 2 - (k & 1));
        mint one = mint(1);
        mint imag = dw[1];
        while(v) {
            if(v == 1) {
                mint ww = one, xx = one, wx = one;
                for(int jh = 0; jh < u;) {
                    ww = xx * xx, wx = ww * xx;
                    mint t0 = a[jh + 0], t1 = a[jh + 1] * xx;
                    mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx;
                    mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3;
                    a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3;
                    xx *= dw[__builtin_ctz((jh += 4))];
                }
            } else if(v == 4) {
                const __m128i m0 = _mm_set1_epi32(0);
                const __m128i m1 = _mm_set1_epi32(mod);
                const __m128i m2 = _mm_set1_epi32(mod + mod);
                const __m128i r = _mm_set1_epi32(mint::r);
                const __m128i Imag = _mm_set1_epi32(imag.a);
                mint ww = one, xx = one, wx = one;
                for(int jh = 0; jh < u;) {
                    if(jh == 0) {
                        int j0 = 0;
                        int j1 = v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = v;
                        for(; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
                            const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
                            const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
                            const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
                            const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
                            const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0);
                            const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0);
                            const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0);
                            const __m128i T1M3 = montgomery_mul_128(montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1);
                            _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0));
                        }
                    } else {
                        ww = xx * xx, wx = ww * xx;
                        const __m128i WW = _mm_set1_epi32(ww.a);
                        const __m128i WX = _mm_set1_epi32(wx.a);
                        const __m128i XX = _mm_set1_epi32(xx.a);
                        int j0 = jh * v;
                        int j1 = j0 + v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = j1;
                        for(; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
                            const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
                            const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
                            const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
                            const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
                            const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1);
                            const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1);
                            const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1);
                            const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0);
                            const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0);
                            const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0);
                            const __m128i T1M3 = montgomery_mul_128(montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1);
                            _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0));
                        }
                    }
                    xx *= dw[__builtin_ctz((jh += 4))];
                }
            } else {
                const __m256i m0 = _mm256_set1_epi32(0);
                const __m256i m1 = _mm256_set1_epi32(mod);
                const __m256i m2 = _mm256_set1_epi32(mod + mod);
                const __m256i r = _mm256_set1_epi32(mint::r);
                const __m256i Imag = _mm256_set1_epi32(imag.a);
                mint ww = one, xx = one, wx = one;
                for(int jh = 0; jh < u;) {
                    if(jh == 0) {
                        int j0 = 0;
                        int j1 = v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = v;
                        for(; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
                            const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                            const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                            const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
                            const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
                            const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0);
                            const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0);
                            const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0);
                            const __m256i T1M3 = montgomery_mul_256(montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1);
                            _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0));
                        }
                    } else {
                        ww = xx * xx, wx = ww * xx;
                        const __m256i WW = _mm256_set1_epi32(ww.a);
                        const __m256i WX = _mm256_set1_epi32(wx.a);
                        const __m256i XX = _mm256_set1_epi32(xx.a);
                        int j0 = jh * v;
                        int j1 = j0 + v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = j1;
                        for(; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
                            const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                            const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                            const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
                            const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
                            const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1);
                            const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1);
                            const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1);
                            const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0);
                            const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0);
                            const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0);
                            const __m256i T1M3 = montgomery_mul_256(montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1);
                            _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0));
                        }
                    }
                    xx *= dw[__builtin_ctz((jh += 4))];
                }
            }
            u <<= 2;
            v >>= 2;
        }
    }

    __attribute__((target("avx2"))) void intt(mint *a, int n, int normalize = true) {
        int k = n ? __builtin_ctz(n) : 0;
        if(k == 0) return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            if(normalize) {
                a[0] *= mint(2).inverse();
                a[1] *= mint(2).inverse();
            }
            return;
        }
        int u = 1 << (k - 2);
        int v = 1;
        mint one = mint(1);
        mint imag = dy[1];
        while(u) {
            if(v == 1) {
                mint ww = one, xx = one, yy = one;
                u <<= 2;
                for(int jh = 0; jh < u;) {
                    ww = xx * xx, yy = xx * imag;
                    mint t0 = a[jh + 0], t1 = a[jh + 1];
                    mint t2 = a[jh + 2], t3 = a[jh + 3];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
                    a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww;
                    a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww;
                    xx *= dy[__builtin_ctz(jh += 4)];
                }
            } else if(v == 4) {
                const __m128i m0 = _mm_set1_epi32(0);
                const __m128i m1 = _mm_set1_epi32(mod);
                const __m128i m2 = _mm_set1_epi32(mod + mod);
                const __m128i r = _mm_set1_epi32(mint::r);
                const __m128i Imag = _mm_set1_epi32(imag.a);
                mint ww = one, xx = one, yy = one;
                u <<= 2;
                for(int jh = 0; jh < u;) {
                    if(jh == 0) {
                        int j0 = 0;
                        int j1 = v;
                        int j2 = v + v;
                        int j3 = j2 + v;
                        for(; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
                            const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
                            const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
                            const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
                            const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
                            const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
                            const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
                            const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0);
                            const __m128i T2M3 = montgomery_mul_128(montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1);
                            _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j2), montgomery_sub_128(T0P1, T2P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M1, T2M3, m2, m0));
                        }
                    } else {
                        ww = xx * xx, yy = xx * imag;
                        const __m128i WW = _mm_set1_epi32(ww.a);
                        const __m128i XX = _mm_set1_epi32(xx.a);
                        const __m128i YY = _mm_set1_epi32(yy.a);
                        int j0 = jh * v;
                        int j1 = j0 + v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = j1;
                        for(; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
                            const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
                            const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
                            const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
                            const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
                            const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
                            const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
                            const __m128i T0M1 = montgomery_mul_128(montgomery_sub_128(T0, T1, m2, m0), XX, r, m1);
                            __m128i T2M3 = montgomery_mul_128(montgomery_sub_128(T2, T3, m2, m0), YY, r, m1);
                            _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j2), montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW, r, m1));
                            _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0));
                            _mm_storeu_si128((__m128i *)(a + j3), montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW, r, m1));
                        }
                    }
                    xx *= dy[__builtin_ctz(jh += 4)];
                }
            } else {
                const __m256i m0 = _mm256_set1_epi32(0);
                const __m256i m1 = _mm256_set1_epi32(mod);
                const __m256i m2 = _mm256_set1_epi32(mod + mod);
                const __m256i r = _mm256_set1_epi32(mint::r);
                const __m256i Imag = _mm256_set1_epi32(imag.a);
                mint ww = one, xx = one, yy = one;
                u <<= 2;
                for(int jh = 0; jh < u;) {
                    if(jh == 0) {
                        int j0 = 0;
                        int j1 = v;
                        int j2 = v + v;
                        int j3 = j2 + v;
                        for(; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
                            const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                            const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                            const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
                            const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
                            const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
                            const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
                            const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0);
                            const __m256i T2M3 = montgomery_mul_256(montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1);
                            _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j2), montgomery_sub_256(T0P1, T2P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M1, T2M3, m2, m0));
                        }
                    } else {
                        ww = xx * xx, yy = xx * imag;
                        const __m256i WW = _mm256_set1_epi32(ww.a);
                        const __m256i XX = _mm256_set1_epi32(xx.a);
                        const __m256i YY = _mm256_set1_epi32(yy.a);
                        int j0 = jh * v;
                        int j1 = j0 + v;
                        int j2 = j1 + v;
                        int j3 = j2 + v;
                        int je = j1;
                        for(; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
                            const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                            const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                            const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
                            const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
                            const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
                            const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
                            const __m256i T0M1 = montgomery_mul_256(montgomery_sub_256(T0, T1, m2, m0), XX, r, m1);
                            const __m256i T2M3 = montgomery_mul_256(montgomery_sub_256(T2, T3, m2, m0), YY, r, m1);
                            _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j2), montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW, r, m1));
                            _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0));
                            _mm256_storeu_si256((__m256i *)(a + j3), montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW, r, m1));
                        }
                    }
                    xx *= dy[__builtin_ctz(jh += 4)];
                }
            }
            u >>= 4;
            v <<= 2;
        }
        if(k & 1) {
            v = 1 << (k - 1);
            if(v < 8) {
                for(int j = 0; j < v; ++j) {
                    mint ajv = a[j] - a[j + v];
                    a[j] += a[j + v];
                    a[j + v] = ajv;
                }
            } else {
                const __m256i m0 = _mm256_set1_epi32(0);
                const __m256i m2 = _mm256_set1_epi32(mod + mod);
                int j0 = 0;
                int j1 = v;
                for(; j0 < v; j0 += 8, j1 += 8) {
                    const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
                    const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
                    __m256i naj = montgomery_add_256(T0, T1, m2, m0);
                    __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
                    _mm256_storeu_si256((__m256i *)(a + j0), naj);
                    _mm256_storeu_si256((__m256i *)(a + j1), najv);
                }
            }
        }
        if(normalize) {
            mint invn = mint(n).inverse();
            for(int i = 0; i < n; i++) a[i] *= invn;
        }
    }

    __attribute__((target("avx2"))) void inplace_multiply(int l1, int l2, int zero_padding = true) {
        int l = l1 + l2 - 1;
        int M = 4;
        while(M < l) M <<= 1;
        if(zero_padding) {
            for(int i = l1; i < M; i++) ntt_inner::_buf1[i] = 0;
            for(int i = l2; i < M; i++) ntt_inner::_buf2[i] = 0;
        }
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m1 = _mm256_set1_epi32(mod);
        const __m256i r = _mm256_set1_epi32(mint::r);
        const __m256i N2 = _mm256_set1_epi32(mint::n2);
        for(int i = 0; i < l1; i += 8) {
            __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
            __m256i b = montgomery_mul_256(a, N2, r, m1);
            _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), b);
        }
        for(int i = 0; i < l2; i += 8) {
            __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
            __m256i b = montgomery_mul_256(a, N2, r, m1);
            _mm256_storeu_si256((__m256i *)(ntt_inner::_buf2 + i), b);
        }
        ntt(buf1, M);
        ntt(buf2, M);
        for(int i = 0; i < M; i += 8) {
            __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
            __m256i b = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
            __m256i c = montgomery_mul_256(a, b, r, m1);
            _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), c);
        }
        intt(buf1, M, false);
        const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a);
        for(int i = 0; i < l; i += 8) {
            __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
            __m256i b = montgomery_mul_256(a, INVM, r, m1);
            __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1);
            __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1);
            __m256i e = _mm256_sub_epi32(d, c);
            _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), e);
        }
    }

    void ntt(vector<mint> &a) {
        int M = (int)a.size();
        for(int i = 0; i < M; i++) buf1[i].a = a[i].a;
        ntt(buf1, M);
        for(int i = 0; i < M; i++) a[i].a = buf1[i].a;
    }

    void intt(vector<mint> &a) {
        int M = (int)a.size();
        for(int i = 0; i < M; i++) buf1[i].a = a[i].a;
        intt(buf1, M, true);
        for(int i = 0; i < M; i++) a[i].a = buf1[i].a;
    }

    vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
        if(a.size() == 0 && b.size() == 0) return vector<mint>{};
        int l = a.size() + b.size() - 1;
        if(min<int>(a.size(), b.size()) <= 40) {
            vector<mint> s(l);
            for(int i = 0; i < (int)a.size(); ++i)
                for(int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
            return s;
        }
        assert(l <= ntt_inner::SZ_FFT_BUF);
        int M = 4;
        while(M < l) M <<= 1;
        for(int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a;
        for(int i = (int)a.size(); i < M; ++i) buf1[i].a = 0;
        for(int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a;
        for(int i = (int)b.size(); i < M; ++i) buf2[i].a = 0;
        ntt(buf1, M);
        ntt(buf2, M);
        for(int i = 0; i < M; ++i) buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a);
        intt(buf1, M, false);
        vector<mint> s(l);
        mint invm = mint(M).inverse();
        for(int i = 0; i < l; ++i) s[i] = buf1[i] * invm;
        return s;
    }

    void ntt_doubling(vector<mint> &a) {
        int M = (int)a.size();
        for(int i = 0; i < M; i++) buf1[i].a = a[i].a;
        intt(buf1, M);
        mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
        for(int i = 0; i < M; i++) buf1[i] *= r, r *= zeta;
        ntt(buf1, M);
        a.resize(2 * M);
        for(int i = 0; i < M; i++) a[M + i].a = buf1[i].a;
    }
};
#line 2 "library/fps/formal-power-series.hpp"

template <typename mint> struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;

    FPS &operator+=(const FPS &r) {
        if(r.size() > this->size()) this->resize(r.size());
        for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
        return *this;
    }

    FPS &operator+=(const mint &r) {
        if(this->empty()) this->resize(1);
        (*this)[0] += r;
        return *this;
    }

    FPS &operator-=(const FPS &r) {
        if(r.size() > this->size()) this->resize(r.size());
        for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
        return *this;
    }

    FPS &operator-=(const mint &r) {
        if(this->empty()) this->resize(1);
        (*this)[0] -= r;
        return *this;
    }

    FPS &operator*=(const mint &v) {
        for(int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
        return *this;
    }

    FPS &operator/=(const FPS &r) {
        if(this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if((int)r.size() <= 64) {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inverse();
            for(auto &x : g) x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for(int i = deg - 1; i >= 0; i--) {
                quo[i] = f[i + gs - 1];
                for(int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }

    FPS &operator%=(const FPS &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }

    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const {
        FPS ret(this->size());
        for(int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
        return ret;
    }

    void shrink() {
        while(this->size() && this->back() == mint(0)) this->pop_back();
    }

    FPS rev() const {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }

    FPS dot(FPS r) const {
        FPS ret(min(this->size(), r.size()));
        for(int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
        return ret;
    }

    FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); }

    FPS operator>>(int sz) const {
        if((int)this->size() <= sz) return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }

    FPS operator<<(int sz) const {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }

    FPS diff() const {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        mint one(1), coeff(1);
        for(int i = 1; i < n; i++) {
            ret[i - 1] = (*this)[i] * coeff;
            coeff += one;
        }
        return ret;
    }

    FPS integral() const {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if(n > 0) ret[1] = mint(1);
        auto mod = mint::get_mod();
        for(int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
        for(int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
        return ret;
    }

    mint eval(mint x) const {
        mint r = 0, w = 1;
        for(auto &v : *this) r += w * v, w *= x;
        return r;
    }

    FPS log(int deg = -1) const {
        assert((*this)[0] == mint(1));
        if(deg == -1) deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    FPS pow(int64_t k, int deg = -1) const {
        const int n = (int)this->size();
        if(deg == -1) deg = n;
        for(int i = 0; i < n; i++) {
            if((*this)[i] != mint(0)) {
                if(i * k > deg) return FPS(deg, mint(0));
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k));
                ret = (ret << (i * k)).pre(deg);
                if((int)ret.size() < deg) ret.resize(deg, mint(0));
                return ret;
            }
        }
        return FPS(deg, mint(0));
    }

    static void *ntt_ptr;
    static void set_fft();
    FPS &operator*=(const FPS &r);
    void ntt();
    void intt();
    void ntt_doubling();
    static int ntt_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};
template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 5 "library/fps/ntt-friendly-fps.hpp"

template <typename mint> void FormalPowerSeries<mint>::set_fft() {
    if(!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint> FormalPowerSeries<mint> &FormalPowerSeries<mint>::operator*=(const FormalPowerSeries<mint> &r) {
    if(this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    set_fft();
    auto ret = static_cast<NTT<mint> *>(ntt_ptr)->multiply(*this, r);
    return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint> void FormalPowerSeries<mint>::ntt() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt(*this);
}

template <typename mint> void FormalPowerSeries<mint>::intt() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->intt(*this);
}

template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint> int FormalPowerSeries<mint>::ntt_pr() {
    set_fft();
    return static_cast<NTT<mint> *>(ntt_ptr)->pr;
}

template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
    assert((*this)[0] != mint(0));
    if(deg == -1) deg = (int)this->size();
    FormalPowerSeries<mint> res(deg);
    res[0] = {mint(1) / (*this)[0]};
    for(int d = 1; d < deg; d <<= 1) {
        FormalPowerSeries<mint> f(2 * d), g(2 * d);
        for(int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
        for(int j = 0; j < d; j++) g[j] = res[j];
        f.ntt();
        g.ntt();
        for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
        f.intt();
        for(int j = 0; j < d; j++) f[j] = 0;
        f.ntt();
        for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
        f.intt();
        for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
    }
    return res.pre(deg);
}

template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
    using fps = FormalPowerSeries<mint>;
    assert((*this).size() == 0 || (*this)[0] == mint(0));
    if(deg == -1) deg = this->size();

    fps inv;
    inv.reserve(deg + 1);
    inv.push_back(mint(0));
    inv.push_back(mint(1));

    auto inplace_integral = [&](fps &F) -> void {
        const int n = (int)F.size();
        auto mod = mint::get_mod();
        while((int)inv.size() <= n) {
            int i = inv.size();
            inv.push_back((-inv[mod % i]) * (mod / i));
        }
        F.insert(begin(F), mint(0));
        for(int i = 1; i <= n; i++) F[i] *= inv[i];
    };

    auto inplace_diff = [](fps &F) -> void {
        if(F.empty()) return;
        F.erase(begin(F));
        mint coeff = 1, one = 1;
        for(int i = 0; i < (int)F.size(); i++) {
            F[i] *= coeff;
            coeff += one;
        }
    };

    fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for(int m = 2; m < deg; m *= 2) {
        auto y = b;
        y.resize(2 * m);
        y.ntt();
        z1 = z2;
        fps z(m);
        for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
        z.intt();
        fill(begin(z), begin(z) + m / 2, mint(0));
        z.ntt();
        for(int i = 0; i < m; ++i) z[i] *= -z1[i];
        z.intt();
        c.insert(end(c), begin(z) + m / 2, end(z));
        z2 = c;
        z2.resize(2 * m);
        z2.ntt();
        fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
        x.resize(m);
        inplace_diff(x);
        x.push_back(mint(0));
        x.ntt();
        for(int i = 0; i < m; ++i) x[i] *= y[i];
        x.intt();
        x -= b.diff();
        x.resize(2 * m);
        for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
        x.ntt();
        for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
        x.intt();
        x.pop_back();
        inplace_integral(x);
        for(int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
        fill(begin(x), begin(x) + m, mint(0));
        x.ntt();
        for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
        x.intt();
        b.insert(end(b), begin(x) + m, end(x));
    }
    return fps{begin(b), begin(b) + deg};
}

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */
#line 4 "library/fps/fast-multieval.hpp"

template <typename mint> vector<mint> FastMultiEval(const FormalPowerSeries<mint> &f, const vector<mint> &xs) {
    using fps = FormalPowerSeries<mint>;
    int s = xs.size();
    int N = 1 << (32 - __builtin_clz((int)xs.size() - 1));
    if(f.empty() || xs.empty()) return vector<mint>(s, mint(0));
    vector<FormalPowerSeries<mint>> buf(2 * N);
    for(int i = 0; i < N; i++) {
        mint n = mint{i < s ? -xs[i] : mint(0)};
        buf[i + N] = fps{n + 1, n - 1};
    }
    for(int i = N - 1; i > 0; i--) {
        fps &g(buf[(i << 1) | 0]), &h(buf[(i << 1) | 1]);
        int n = g.size();
        int m = n << 1;
        buf[i].reserve(m);
        buf[i].resize(n);
        for(int j = 0; j < n; j++) buf[i][j] = g[j] * h[j] - mint(1);
        if(i != 1) {
            buf[i].ntt_doubling();
            for(int j = 0; j < m; j++) buf[i][j] += j < n ? mint(1) : -mint(1);
        }
    }

    int fs = f.size();
    fps root = buf[1];
    root.intt();
    root.push_back(1);
    reverse(begin(root), end(root));
    root = root.inv(fs).rev() * f;
    root.erase(begin(root), begin(root) + fs - 1);
    root.resize(N, mint(0));

    vector<mint> ans(s);

    auto calc = [&](auto rec, int i, int l, int r, fps g) -> void {
        if(i >= N) {
            ans[i - N] = g[0];
            return;
        }
        int len = g.size(), m = (l + r) >> 1;
        g.ntt();
        fps tmp = buf[i * 2 + 1];
        for(int j = 0; j < len; j++) tmp[j] *= g[j];
        tmp.intt();
        rec(rec, i * 2 + 0, l, m, fps{begin(tmp) + (len >> 1), end(tmp)});
        if(m >= s) return;
        tmp = buf[i * 2 + 0];
        for(int j = 0; j < len; j++) tmp[j] *= g[j];
        tmp.intt();
        rec(rec, i * 2 + 1, m, r, fps{begin(tmp) + (len >> 1), end(tmp)});
    };
    calc(calc, 1, 0, N, root);
    return ans;
}

/**
 * @brief Multipoint Evaluation(高速化版)
 */
#line 2 "library/modint/arbitrary-prime-modint.hpp"

struct ArbitraryLazyMontgomeryModInt {
    using mint = ArbitraryLazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static u32 mod;
    static u32 r;
    static u32 n2;

    static u32 get_r() {
        u32 ret = mod;
        for(i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static void set_mod(u32 m) {
        assert(m < (1 << 30));
        assert((m & 1) == 1);
        mod = m;
        n2 = -u64(m) % m;
        r = get_r();
        assert(r * mod == 1);
    }

    u32 a;

    ArbitraryLazyMontgomeryModInt() : a(0) {}
    ArbitraryLazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){};

    static u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; }

    mint &operator+=(const mint &b) {
        if(i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    mint &operator-=(const mint &b) {
        if(i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    mint &operator*=(const mint &b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    mint &operator/=(const mint &b) {
        *this *= b.inverse();
        return *this;
    }

    mint operator+(const mint &b) const { return mint(*this) += b; }
    mint operator-(const mint &b) const { return mint(*this) -= b; }
    mint operator*(const mint &b) const { return mint(*this) *= b; }
    mint operator/(const mint &b) const { return mint(*this) /= b; }
    bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); }
    bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); }
    mint operator-() const { return mint() - mint(*this); }

    mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); }

    friend istream &operator>>(istream &is, mint &b) {
        int64_t t;
        is >> t;
        b = ArbitraryLazyMontgomeryModInt(t);
        return (is);
    }

    mint inverse() const { return pow(mod - 2); }

    u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;
#line 3 "library/modulo/mod-sqrt.hpp"

int64_t mod_sqrt(const int64_t &a, const int64_t &p) {
    assert(0 <= a && a < p);
    if(a < 2) return a;
    using Mint = ArbitraryLazyMontgomeryModInt;
    Mint::set_mod(p);
    if(Mint(a).pow((p - 1) >> 1) != 1) return -1;
    Mint b = 1, one = 1;
    while(b.pow((p - 1) >> 1) == 1) b += one;
    int64_t m = p - 1, e = 0;
    while(m % 2 == 0) m >>= 1, e += 1;
    Mint x = Mint(a).pow((m - 1) >> 1);
    Mint y = Mint(a) * x * x;
    x *= a;
    Mint z = Mint(b).pow(m);
    while(y != 1) {
        int64_t j = 0;
        Mint t = y;
        while(t != one) {
            j += 1;
            t *= t;
        }
        z = z.pow(int64_t(1) << (e - j - 1));
        x *= z;
        z *= z;
        y *= z;
        e = j;
    }
    return x.get();
}

/**
 * @brief mod sqrt(Tonelli-Shanks algorithm)
 * @docs docs/modulo/mod-sqrt.md
 */
#line 4 "library/fps/fps-sqrt.hpp"

template <typename mint> FormalPowerSeries<mint> sqrt(const FormalPowerSeries<mint> &f, int deg = -1) {
    if(deg == -1) deg = (int)f.size();
    if((int)f.size() == 0) return FormalPowerSeries<mint>(deg, 0);
    if(f[0] == mint(0)) {
        for(int i = 1; i < (int)f.size(); i++) {
            if(f[i] != mint(0)) {
                if(i & 1) return {};
                if(deg - i / 2 <= 0) break;
                auto ret = sqrt(f >> i, deg - i / 2);
                if(ret.empty()) return {};
                ret = ret << (i / 2);
                if((int)ret.size() < deg) ret.resize(deg, mint(0));
                return ret;
            }
        }
        return FormalPowerSeries<mint>(deg, 0);
    }

    int64_t sqr = mod_sqrt(f[0].get(), mint::get_mod());
    if(sqr == -1) return {};
    assert(sqr * sqr % mint::get_mod() == f[0].get());
    FormalPowerSeries<mint> ret = {mint(sqr)};
    mint inv2 = mint(2).inverse();
    for(int i = 1; i < deg; i <<= 1) { ret = (ret + f.pre(i << 1) * ret.inv(i << 1)) * inv2; }
    return ret.pre(deg);
}

/**
 * @brief 平方根
 * @docs docs/fps/fps-sqrt.md
 */
#line 2 "library/fps/kitamasa.hpp"

#line 4 "library/fps/kitamasa.hpp"

template <typename mint> mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> P) {
    Q.shrink();
    mint ret = 0;
    if(P.size() >= Q.size()) {
        auto R = P / Q;
        P -= R * Q;
        P.shrink();
        if(k < (int)R.size()) ret += R[k];
    }
    if((int)P.size() == 0) return ret;

    FormalPowerSeries<mint>::set_fft();
    if(FormalPowerSeries<mint>::ntt_ptr == nullptr) {
        P.resize((int)Q.size() - 1);
        while(k) {
            auto Q2 = Q;
            for(int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i];
            auto S = P * Q2;
            auto T = Q * Q2;
            if(k & 1) {
                for(int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
                for(int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
            } else {
                for(int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
                for(int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
            }
            k >>= 1;
        }
        return ret + P[0];
    } else {
        int N = 1;
        while(N < (int)Q.size()) N <<= 1;

        P.resize(2 * N);
        Q.resize(2 * N);
        P.ntt();
        Q.ntt();
        vector<mint> S(2 * N), T(2 * N);

        vector<int> btr(N);
        for(int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) { btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1)); }
        mint dw = mint(FormalPowerSeries<mint>::ntt_pr()).inverse().pow((mint::get_mod() - 1) / (2 * N));

        while(k) {
            mint inv2 = mint(2).inverse();

            // even degree of Q(x)Q(-x)
            T.resize(N);
            for(int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1];

            S.resize(N);
            if(k & 1) {
                // odd degree of P(x)Q(-x)
                for(auto &i : btr) {
                    S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] - P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2;
                    inv2 *= dw;
                }
            } else {
                // even degree of P(x)Q(-x)
                for(int i = 0; i < N; i++) { S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] + P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2; }
            }
            swap(P, S);
            swap(Q, T);
            k >>= 1;
            if(k < N) break;
            P.ntt_doubling();
            Q.ntt_doubling();
        }
        P.intt();
        Q.intt();
        return ret + (P * (Q.inv()))[k];
    }
}

template <typename mint> mint kitamasa(long long N, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> a) {
    assert(!Q.empty() && Q[0] != 0);
    if(N < (int)a.size()) return a[N];
    assert((int)a.size() >= int(Q.size()) - 1);
    auto P = a.pre((int)Q.size() - 1) * Q;
    P.resize(Q.size() - 1);
    return LinearRecurrence<mint>(N, Q, P);
}

/**
 * @brief 線形漸化式の高速計算
 * @docs docs/fps/kitamasa.md
 */
#line 2 "library/fps/lagrange-interpolation-point.hpp"

#line 4 "library/fps/lagrange-interpolation-point.hpp"

// given  : y(x=0) , y(x=1) , ... , y(k)
// return : y(x)
template <typename mint> mint lagrange_interpolation(const vector<mint> &y, long long x, Binomial<mint> &C) {
    int N = (int)y.size() - 1;
    if(x <= N) return y[x];
    mint ret = 0;
    vector<mint> dp(N + 1, 1), pd(N + 1, 1);
    mint a = x, one = 1;
    for(int i = 0; i < N; i++) dp[i + 1] = dp[i] * a, a -= one;
    for(int i = N; i > 0; i--) pd[i - 1] = pd[i] * a, a += one;
    for(int i = 0; i <= N; i++) {
        mint tmp = y[i] * dp[i] * pd[i] * C.finv(i) * C.finv(N - i);
        ret += ((N - i) & 1) ? -tmp : tmp;
    }
    return ret;
}
#line 2 "library/fps/nth-term.hpp"

#line 5 "library/fps/nth-term.hpp"

template <typename mint> mint nth_term(long long n, const vector<mint> &s) {
    using fps = FormalPowerSeries<mint>;
    auto bm = BerlekampMassey<mint>(s);
    return kitamasa(n, fps{begin(bm), end(bm)}, fps{begin(s), end(s)});
}

/**
 * @brief 線形回帰数列の高速計算(Berlekamp-Massey/Bostan-Mori)
 * @docs docs/fps/nth-term.md
 */
#line 12 "a.cpp"

using mint = LazyMontgomeryModInt<998244353>;
using fps = FormalPowerSeries<mint>;
using vmint = vector<mint>;
Binomial<mint> binomial;
mint inv(int i) { return binomial.inv(i); }
mint C(int r, int c) { return binomial.C(r, c); }
mint P(int r, int c) { return binomial.P(r, c); }
mint fact(int r) { return binomial.fac(r); }
mint ifact(int r) { return binomial.finv(r); }

} // namespace Modular998

using namespace Modular998;

int main() {
    INT(n, x, y);
    y = y - x;

    vector<fps> dp(n + 5);
    dp[0] = fps{0, 1};
    rep(i, 1, n + 5) {
        fps f = dp[i - 1] * x;
        if(i > 1) { f += dp[i - 2] * y; }
        dp[i] = (f.exp(n) << 1);
    }

    // vv(mint, f, 0);
    vector<fps> f(n + 5);
    swap(f, dp);

    vector<fps> g(n + 5);
    rep(i, 1, n + 5) g[i] = f[i] - f[i - 1];
    g[0] = fps{0, 1};

    // rep(i, n + 5) dump(i, f[i]);
    // rep(i, n + 5) dump(i, g[i]);

    mint ans;
    // 中心が頂点
    rep(d, 1, n + 5) {
        auto a = (d >= 2 ? f[d - 2] : fps()) * x + (d >= 3 ? f[d - 3] : fps()) * y;
        auto b = (d >= 1 ? g[d - 1] : fps()) * x + (d >= 2 ? g[d - 2] : fps()) * y;
        a.resize(n), b.resize(n);

        // dump(a, b);
        // dump(d, ((a + b).exp(n)[n - 1] - a.exp(n)[n - 1] - (a.exp(n) * b)[n - 1]));
        ans += ((a + b).exp(n)[n - 1] - a.exp(n)[n - 1] - (a.exp(n) * b)[n - 1]) * (d * 2);
    }

    // 中心が辺、d + d
    rep(d, n + 5) {
        auto a = g[d];
        a = (a * a) * inv(2);
        if(si(a) > n) {
            ans += mint(x * (d * 2 + 1) + y * (d * 2 + 2)) * a[n];
            // dump(d, a[n]);
        }
    }

    // 中心が辺、d + (d + 1)
    rep(d, n + 4) {
        auto a = g[d];
        auto b = g[d + 1];
        a = a * b;
        if(si(a) > n) {
            ans += mint(y * (d * 2 + 3)) * a[n];
            // dump(d, a[n]);
        }
    }

    dump(ans);

    OUT(ans * fact(n) / mint(n).pow(n - 2) / mint(x + y).pow(n - 1));
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3684kb

input:

2 1 3

output:

665496237

result:

ok 1 number(s): "665496237"

Test #2:

score: 0
Accepted
time: 1ms
memory: 5964kb

input:

3 2 3

output:

665496238

result:

ok 1 number(s): "665496238"

Test #3:

score: 0
Accepted
time: 2046ms
memory: 52880kb

input:

2000 1 2

output:

254870088

result:

ok 1 number(s): "254870088"

Test #4:

score: 0
Accepted
time: 2026ms
memory: 52740kb

input:

2000 1 3

output:

193693601

result:

ok 1 number(s): "193693601"

Test #5:

score: 0
Accepted
time: 2040ms
memory: 52680kb

input:

1999 188 211

output:

463395288

result:

ok 1 number(s): "463395288"

Test #6:

score: 0
Accepted
time: 2033ms
memory: 52620kb

input:

1990 470 818

output:

479264654

result:

ok 1 number(s): "479264654"

Test #7:

score: 0
Accepted
time: 508ms
memory: 17324kb

input:

1000 407 783

output:

20089106

result:

ok 1 number(s): "20089106"

Test #8:

score: 0
Accepted
time: 503ms
memory: 17128kb

input:

990 884 901

output:

94051884

result:

ok 1 number(s): "94051884"

Test #9:

score: 0
Accepted
time: 500ms
memory: 17164kb

input:

995 873 988

output:

209191626

result:

ok 1 number(s): "209191626"

Test #10:

score: 0
Accepted
time: 131ms
memory: 8448kb

input:

500 307 938

output:

603465152

result:

ok 1 number(s): "603465152"

Test #11:

score: 0
Accepted
time: 124ms
memory: 8736kb

input:

490 237 732

output:

402554558

result:

ok 1 number(s): "402554558"

Test #12:

score: 0
Accepted
time: 124ms
memory: 9000kb

input:

495 473 511

output:

833418554

result:

ok 1 number(s): "833418554"

Test #13:

score: 0
Accepted
time: 35ms
memory: 6800kb

input:

250 69 207

output:

786182422

result:

ok 1 number(s): "786182422"

Test #14:

score: 0
Accepted
time: 29ms
memory: 6512kb

input:

240 184 259

output:

473414786

result:

ok 1 number(s): "473414786"

Test #15:

score: 0
Accepted
time: 29ms
memory: 6564kb

input:

245 478 807

output:

312847415

result:

ok 1 number(s): "312847415"

Test #16:

score: 0
Accepted
time: 10ms
memory: 6148kb

input:

125 112 253

output:

31497383

result:

ok 1 number(s): "31497383"

Test #17:

score: 0
Accepted
time: 10ms
memory: 5980kb

input:

120 137 498

output:

923043504

result:

ok 1 number(s): "923043504"

Test #18:

score: 0
Accepted
time: 8ms
memory: 6156kb

input:

100 230 792

output:

203877027

result:

ok 1 number(s): "203877027"

Extra Test:

score: 0
Extra Test Passed