QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#379354 | #8576. Symphony in c++ major | ucup-team1516# | AC ✓ | 3430ms | 221692kb | C++20 | 62.6kb | 2024-04-06 17:14:43 | 2024-04-06 17:14:45 |
Judging History
answer
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define db double
#define pii pair<int,int>
#define pli pair<ll,int>
#define pil pair<int,ll>
#define pll pair<ll,ll>
#define ti3 tuple<int,int,int>
#define int128 __int128_t
#define pii128 pair<int128,int128>
const int inf = 1 << 30;
const ll linf = 1e18;
const db EPS = 1e-10;
const db pi = acos(-1);
template<class T> bool chmin(T& x, T y){
if(x > y) {
x = y;
return true;
} else return false;
}
template<class T> bool chmax(T& x, T y){
if(x < y) {
x = y;
return true;
} else return false;
}
// overload macro
#define CAT( A, B ) A ## B
#define SELECT( NAME, NUM ) CAT( NAME, NUM )
#define GET_COUNT( _1, _2, _3, _4, _5, _6 /* ad nauseam */, COUNT, ... ) COUNT
#define VA_SIZE( ... ) GET_COUNT( __VA_ARGS__, 6, 5, 4, 3, 2, 1 )
#define VA_SELECT( NAME, ... ) SELECT( NAME, VA_SIZE(__VA_ARGS__) )(__VA_ARGS__)
// rep(overload)
#define rep( ... ) VA_SELECT(rep, __VA_ARGS__)
#define rep2(i, n) for (int i = 0; i < int(n); i++)
#define rep3(i, a, b) for (int i = a; i < int(b); i++)
#define rep4(i, a, b, c) for (int i = a; i < int(b); i += c)
// repll(overload)
#define repll( ... ) VA_SELECT(repll, __VA_ARGS__)
#define repll2(i, n) for (ll i = 0; i < (ll)(n); i++)
#define repll3(i, a, b) for (ll i = a; i < (ll)(b); i++)
#define repll4(i, a, b, c) for (ll i = a; i < (ll)(b); i += c)
// rrep(overload)
#define rrep( ... ) VA_SELECT(rrep, __VA_ARGS__)
#define rrep2(i, n) for (int i = n - 1; i >= 0; i--)
#define rrep3(i, a, b) for (int i = b - 1; i >= a; i--)
#define rrep4(i, a, b, c) for (int i = b - 1; i >= a; i -= c)
// rrepll(overload)
#define rrepll( ... ) VA_SELECT(rrepll, __VA_ARGS__)
#define rrepll2(i, n) for (ll i = (ll)(n) - 1; i >= 0ll; i--)
#define rrepll3(i, a, b) for (ll i = b - 1; i >= (ll)(a); i--)
#define rrepll4(i, a, b, c) for (ll i = b - 1; i >= (ll)(a); i -= c)
// for_earh
#define fore(e, v) for (auto&& e : v)
// vector
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
public:
dsu() : _n(0) {}
dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T> struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree() : _n(0) {}
fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>
namespace atcoder {
long long pow_mod(long long x, long long n, int m) {
assert(0 <= n && 1 <= m);
if (m == 1) return 0;
internal::barrett bt((unsigned int)(m));
unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
while (n) {
if (n & 1) r = bt.mul(r, y);
y = bt.mul(y, y);
n >>= 1;
}
return r;
}
long long inv_mod(long long x, long long m) {
assert(1 <= m);
auto z = internal::inv_gcd(x, m);
assert(z.first == 1);
return z.second;
}
// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
const std::vector<long long>& m) {
assert(r.size() == m.size());
int n = int(r.size());
// Contracts: 0 <= r0 < m0
long long r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) {
std::swap(r0, r1);
std::swap(m0, m1);
}
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
// assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
// (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
// r2 % m0 = r0
// r2 % m1 = r1
// -> (r0 + x*m0) % m1 = r1
// -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
// -> x = (r1 - r0) / g * inv(u0) (mod u1)
// im = inv(u0) (mod u1) (0 <= im < u1)
long long g, im;
std::tie(g, im) = internal::inv_gcd(m0, m1);
long long u1 = (m1 / g);
// |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
if ((r1 - r0) % g) return {0, 0};
// u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
long long x = (r1 - r0) / g % u1 * im % u1;
// |r0| + |m0 * x|
// < m0 + m0 * (u1 - 1)
// = m0 + m0 * m1 / g - m0
// = lcm(m0, m1)
r0 += x * m0;
m0 *= u1; // -> lcm(m0, m1)
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b) {
long long ans = 0;
if (a >= m) {
ans += (n - 1) * n * (a / m) / 2;
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
if (y_max == 0) return ans;
ans += (n - (x_max + a - 1) / a) * y_max;
ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
return ans;
}
} // namespace atcoder
#include <algorithm>
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit) {
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#include <algorithm>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
struct scc_graph {
public:
scc_graph() : internal(0) {}
scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() { return internal.scc(); }
private:
internal::scc_graph internal;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
// Reference:
// B. Aspvall, M. Plass, and R. Tarjan,
// A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean
// Formulas
struct two_sat {
public:
two_sat() : _n(0), scc(0) {}
two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}
void add_clause(int i, bool f, int j, bool g) {
assert(0 <= i && i < _n);
assert(0 <= j && j < _n);
scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
}
bool satisfiable() {
auto id = scc.scc_ids().second;
for (int i = 0; i < _n; i++) {
if (id[2 * i] == id[2 * i + 1]) return false;
_answer[i] = id[2 * i] < id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return _answer; }
private:
int _n;
std::vector<bool> _answer;
internal::scc_graph scc;
};
} // namespace atcoder
using namespace atcoder;
int idx[26];
int nxt[26];
struct node {
int dp[6][6];
node() {
rep (i, 6) rep (j, 6) dp[i][j] = -inf;
}
};
node op(node a, node b) {
node ret;
rep (i, 6) rep (j, 6) {
chmax(ret.dp[i][j], max(a.dp[i][j], b.dp[i][j]));
}
vector<int> mxa(6, -inf), mxb(6, -inf), fila(6, 0), filb(6, 0);
rep (i, 6) rep (j, 6) {
if (mxa[i] == a.dp[i][j]) {
if (j < 5) fila[i] |= 1 << j;
} else if (chmax(mxa[i], a.dp[i][j])) {
if (j < 5) fila[i] = 1 << j;
else fila[i] = 0;
}
if (mxb[j] == b.dp[i][j]) {
if (i < 5) filb[j] |= 1 << i;
} else if (chmax(mxb[j], b.dp[i][j])) {
if (i < 5) filb[j] = 1 << i;
else filb[j] = 0;
}
}
rep (i, 6) rep (j, 6) {
chmax(ret.dp[i][j], mxa[i] + mxb[j] + 2 * ((fila[i] & filb[j]) != 0));
}
return ret;
}
node e() {
return node();
}
int n, q;
string s;
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
cin >> n >> q >> s;
segtree<node, op, e> st(n);
string con = "drmfslt";
string to = "oeiaoai";
string vow = "aiueo";
vector<int> cons(26), vows(26);
rep (i, vow.size()) {
vows[vow[i] - 'a'] = true;
idx[vow[i] - 'a'] = i;
}
rep (i, con.size()) {
cons[con[i] - 'a'] = true;
idx[con[i] - 'a'] = idx[to[i] - 'a'];
}
rep (i, n) {
int ci = s[i] - 'a';
node nd;
if (cons[ci]) {
nd.dp[5][idx[ci]] = 0;
}
if (vows[ci]) {
nd.dp[idx[ci]][5] = 0;
}
st.set(i, nd);
}
rep (_, q) {
char c;
int l, r;
cin >> c >> l >> r;
l--;
if (c == '?') {
node val = st.prod(l, r);
int mx = 0;
rep (i, 6) rep (j, 6) chmax(mx, val.dp[i][j]);
cout << r - l - mx << '\n';
} else {
string t;
cin >> t;
rep (i, t.size()) {
int ci = t[i] - 'a';
node nd;
if (cons[ci]) {
nd.dp[5][idx[ci]] = 0;
}
if (vows[ci]) {
nd.dp[idx[ci]][5] = 0;
}
st.set(l + i, nd);
}
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3652kb
input:
8 10 eldorado ? 1 3 ? 1 8 # 6 7 it ? 1 8 # 3 3 t ? 1 8 # 1 8 streamer ? 1 8 # 1 8 symphony ? 1 8
output:
3 4 6 6 6 6
result:
ok 6 numbers
Test #2:
score: 0
Accepted
time: 3356ms
memory: 221656kb
input:
500000 300000 rfsraltzititrofomloldlaefikdemaddaafmimiioiuaueiaedifacmxamttiiitaaltiiireexeafsaaraedosotlaioootaiosizlifiioadhnxiofsasaflleaiisstaotdlliulilxatrpdaraaraaoiaeoooiumwuumarlifesroloistedoaaieolisaoatamsredorrfiifaaidfeassfioaiasmstomasallsftsrfaiiirteomaeiirefldmlaoaofrxlaeuilioirafotoa...
output:
122151 133262 96922 55212 91547 148150 73505 4097 300798 54037 56741 265921 127608 170707 79236 209443 84732 83219 184042 77169 94062 172946 202750 97798 92449 67243 171524 145772 53856 165837 104913 179165 35068 55893 17287 74510 319355 244761 118810 162815 175172 136079 43107 237581 112894 48610 1...
result:
ok 259513 numbers
Test #3:
score: 0
Accepted
time: 3272ms
memory: 221648kb
input:
500000 300000 lotlidiecoletemimaaoaieraollaootuletelsaoasaooouafffomoiiadlaaoialmiaohrteruirstasoiroeoiadeaitimliimlaoiuaeslfosyfisiiimooottmfamirdoliaalmmeimmiodaouafyomaadoioroafeeuerommodsdleiofatiumuaososoeeldemimoeealoifioaooieiolloiqltfeacsmstjliliteddvdtiooeltaaddorieeatdriseotiooaooffmaldtti...
output:
47592 52818 241877 176764 27498 150113 14836 51092 9558 225258 201572 264107 109170 71964 84756 115631 110279 135193 106534 133703 185514 74911 95984 4681 69107 147124 166099 99175 108179 28042 208879 175112 16110 59221 84912 152966 78464 112642 31867 10884 116218 225278 141566 269148 65227 17079 18...
result:
ok 252049 numbers
Test #4:
score: 0
Accepted
time: 2753ms
memory: 221484kb
input:
500000 300000 iaeoeoieoeaioaeeoeeooeeiiaiiodaeikaaaaoiiaioieioaiaoiaiaoaafaeoeeeaeiieieaaoaaaooeoaiooiaeaiieooiooeiioeieaoeaieieaeieeiaaaieiooeoaiaeeeooiaaeoeaioaaeeoeaeoaieeeeoiaiaaoeoeaoaeaoaaaieaieaaiaaieoioiiioaiiioooiaaeaoioeiaeiieioeeaiiaoeoaeoaeeaeaooiaeoeeeaeeieeeoaieeioeeeieboeiooieooeaiaai...
output:
155664 273837 139845 16745 209259 88451 160434 169710 329924 215057 243772 4084 207120 80591 7576 371931 44628 68519 237892 115478 13174 263235 81210 25739 190523 95252 265302 287547 272144 65242 68551 417351 256956 67992 134544 58333 37243 335458 229829 258731 259804 111703 163824 818 334444 154340...
result:
ok 259639 numbers
Test #5:
score: 0
Accepted
time: 2790ms
memory: 221452kb
input:
500000 300000 mfldmtsdrrrdsmdsmssmddtsfstsfssrlmlrmslorsdtfffmlffflrftddfrttrtelftdtrsrstsrmddseftlmrrtfmlfmmrfdrsmmmtstmfdtmddlmlrldsfdmfstrfifrmtmsmtllrfstmdlttldfllfsmtdrlfrrfffdrmtsforddrtssldmsmslffftssrdlcdmrdrrlmlfrlmrffddmrddrsmdtrltmdrmdltmsssltttdsfdsdtrmmdrtmrstorrffmrftfssmsdmllltrrsflrf...
output:
170615 247842 73399 454147 266865 54003 27279 65510 174723 184626 159949 23029 203052 169738 278963 82792 346300 15256 9231 33253 39362 189106 58738 24996 20987 158695 116975 45334 178698 213764 214955 31665 21659 24427 125495 59410 275000 63449 113696 57040 388491 419930 333741 370485 149329 163203...
result:
ok 259629 numbers
Test #6:
score: 0
Accepted
time: 3037ms
memory: 221464kb
input:
500000 300000 czpyuxvyjqnxxgvjkgcucuqhwovqgubbkwvwwnvgcybzzuqbgxvzxqvqbnkzguwcncnyzxxkunchbnubbvbqyxzwbwvgunbbvgppkbzgjwyhqhlhpxqvbwxywhbxnkyxuhvhgckuvkyyqkghhkqgzjpnpuwqwpbxkbjqcycyqvgukpjqcwbbucwwbuzqywqwbzpufxcwqyqpgnqycbhqwxpyhjjpbyuhkugunywzpxwjvxjnpkyqyukycuhbqcbvvgjbcxqpzbhwpxvpgkzvkbcxywqzuc...
output:
252806 247101 133249 312511 114341 73663 40589 19639 408077 146060 263530 16361 112488 256479 43210 14991 39252 125475 173653 413028 52929 298538 119913 49669 170516 178708 96160 69247 191681 442952 185294 368877 36983 97493 303846 160379 368975 160873 237029 166745 270367 43050 63804 130632 215542 ...
result:
ok 259840 numbers
Test #7:
score: 0
Accepted
time: 3401ms
memory: 221680kb
input:
500000 300000 amsdoiofrraaioimifstsiyiimreorktolsiiiduofiatidlldliaoifmfdaeaesopeuriilaoafooefulietmoadrafoidsmalrlaeiftfmoaddrsflsntmisiaitmiftdearlsifsdmfmfomiriaoilidoaeftieoaietlomftqeioleoaoieemddltiifwaroaosidoomoismslaamrmemesftomiaomofdkaisitariidmsiielatmdaaigdrmomiagomyitoaafodsralotoorefa...
output:
223011 244099 31549 75130 154921 44925 209959 101993 282634 127723 99737 50446 81230 116844 78698 97497 110433 80488 165468 22675 262802 157063 219488 127253 147503 59704 53826 293093 288620 61987 45835 155711 23954 242875 247121 234463 49947 255051 119167 284400 306083 256546 155392 242605 4545 211...
result:
ok 299993 numbers
Test #8:
score: 0
Accepted
time: 3430ms
memory: 221536kb
input:
500000 300000 sframtdrsmoosriamldrfmommrilliarsimrratmaersltllitseadkdasoeirreiaaoaiesesaooaoaoddsooioioalftseadifaeotmfddaarassldotaoftldsdrsoitaoaioapilfarsrftivtsrhxlirmlytrdswmiismrfctmaormiooolilafdlforraaisftttellmasiloimrserotianslotmooevfiaoafdaraotisoirodomaerrmftaidaaafatoaaomimfoiaoloeaal...
output:
277612 157353 76818 252490 143568 48930 33261 264593 13910 29655 244387 33023 251154 39474 140414 77265 204309 130191 165359 176962 25055 142229 291636 211276 33126 114028 129436 212380 65758 179755 124526 93940 163685 50456 246610 198842 17334 131827 246450 44098 192458 109098 182124 20026 217819 6...
result:
ok 299999 numbers
Test #9:
score: 0
Accepted
time: 3405ms
memory: 221484kb
input:
500000 300000 lidrfmeollmalmateadqdrrsaiiatrtkfatizloiltadstioliodatmolitddhtdomeptmsdutfdmomidddiaoidffuduosamitpahtdtoatufetreusifaaooeoeimmosqotrlwoshifgmipmiidmolelolrtofsaoesosldiqottttiiliaemduaasroaoasoulrmoreoaoisortrtaemsfofdwemdmedomuoiailriefaaaafodattaiioirojmeoddllarafmmoooeoofamrtlamme...
output:
212627 202392 40965 224537 105052 120592 81309 15317 105849 63739 8050 291407 45986 30855 309763 24189 159753 260330 127439 103266 6917 110772 1159 38820 185923 242493 38951 285915 284575 161444 18645 309458 69738 29644 18295 223147 237826 26737 5043 113381 206203 99711 138427 251950 96951 183255 22...
result:
ok 299944 numbers
Test #10:
score: 0
Accepted
time: 3149ms
memory: 221572kb
input:
500000 300000 erdfmdisfrzffroemadsaottfeafdlauoermooavdoodeeiiteoaioiiralliemrslzoolmltlrfkaogianmmmrnmiiaofffototidldasddizoetefiliouisiuuidadftilolosorrlmlimtosarrladsimferaedfamlsdfsaifiselaaflroioarsaflddoonraaadimooimeduxsrlolleroofoofmoiryeloodliadarmsalolmdsoafsyylaamiertiddmaoafosidisrlmduia...
output:
15259 113288 220815 156954 15618 135903 73729 226050 39490 83872 82620 86957 112601 237050 146383 24396 75918 144053 43114 22165 75762 63909 272997 147524 217444 246685 263575 38186 141439 20563 84462 149039 42269 293780 209140 101970 82278 180171 82978 70885 15375 778 42561 255474 61255 3176 64952 ...
result:
ok 200000 numbers
Test #11:
score: 0
Accepted
time: 3078ms
memory: 221420kb
input:
500000 300000 mflloooseefaerivbotdidflomeisustcfdtpiloftsefriielodriorsrfnrmillafifaaalarlsuioieeasimotattoaeailstftoraileolfotpmdiataeolllertatdrieaieogwmeiolaemmaoeffmmsaatjoaiosodmiorrrieatdweoslteitslrjfsuefitfiohloddirmoalobsijlditdsaieasdaimodxaaollrlrtoeeorolaaufemetiaiooatsjrssldlltaoifrorrf...
output:
99460 218290 231216 180988 30522 126828 110853 38646 74849 80785 74248 88213 85124 201026 302285 41464 59126 113774 190335 130258 81671 45547 227442 619 91975 134533 78487 156408 56126 222735 210419 166366 51590 98393 132917 155557 246994 181489 45646 6303 28675 173945 57398 180910 18358 79758 21519...
result:
ok 300000 numbers
Test #12:
score: 0
Accepted
time: 281ms
memory: 4028kb
input:
1111 34567 tstfaoolatsrooauaiaralairoaltzossigaieliaatooifureiildiessasdlsuiodatqtosdxioididesotarlotrilmsrmimoitfoaaurrmlseooiiimamrylldtidifoirsnofoffiaitalwetmriolfpudildafoaottoosfaatiieuaforregimiflmuaaeaffajifiafotiremoalsdnoraafdmmobfitfojztiaaedeaseldamoomdiedmeaiipsaoedadameltdamartfolmitoa...
output:
40 415 149 290 247 101 692 79 327 188 10 338 542 445 28 139 776 107 121 556 265 562 404 97 547 152 237 43 48 298 451 122 207 251 206 121 330 227 239 222 49 182 330 13 69 207 287 75 229 128 334 171 123 448 441 230 370 61 98 90 672 126 105 269 212 492 175 90 84 101 497 163 69 683 74 424 99 720 767 66 ...
result:
ok 33778 numbers
Test #13:
score: 0
Accepted
time: 91ms
memory: 3652kb
input:
1 300000 a ? 1 1 ? 1 1 # 1 1 f # 1 1 m # 1 1 d # 1 1 i ? 1 1 ? 1 1 ? 1 1 # 1 1 o ? 1 1 # 1 1 h # 1 1 k ? 1 1 ? 1 1 # 1 1 m ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 # 1 1 t ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 # 1 1 o # 1 1 o ? 1 1 ? 1 1 # 1 1 q ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 ? 1 1 # 1 1 e ? 1 1 ? 1 1...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 200000 numbers
Test #14:
score: 0
Accepted
time: 2712ms
memory: 221692kb
input:
500000 300000 rdiofommsddakrssmoariffilsiriojaefsarmoiitaiimfreoefimaoahdeoyimmmdstsoaiamltddsdfeoftmsfonifdisimioiidslsfftmumteafruawttdafaeaftstiaofiommrellaaedmlmtmtteadotealafudridlfommofaudoffaaloioaeematsaeooatrsouriloouarsaoolioolfiltltaomatefsftmatdodiroaosllpairoiedutsoiromoadoaailddsediise...
output:
107445 56695 9508 436678 167563 57050 45340 336836 49756 46022 208532 342287 201758 147717 340761 147084 72089 138991 144987 282751 117034 32815 12074 43871 313224 96260 193586 40864 36782 384372 234195 46566 59268 111126 246182 133291 192469 60292 356101 121971 183236 165437 165429 275547 121850 28...
result:
ok 240866 numbers
Test #15:
score: 0
Accepted
time: 2609ms
memory: 221564kb
input:
500000 300000 jsedovfebimtdftrrtuedfogoeitedafieleooarrmmlllioroiaalsmomeakmtetaiaolmoeamaassoulorfdiaoasimuataoafeaiirairmssztrfsdealoamsirocdfvdrlirttdaalaioafssodlasoofririmifomsososlatiaaadsilaolflaaadrosnfloiimgeismaaotaefidodtodriweuddqiaaiiiedoosotaosarasmeeddassfoisifjieauofoitieslfallldrdba...
output:
330282 168449 13569 338375 325937 50402 104854 32708 202237 396258 60067 300525 41449 52434 233908 50973 195732 165034 18127 39012 50887 205160 221001 244939 263621 241413 296881 54180 74555 317038 73556 203505 141393 17774 339668 140510 15386 134493 328432 97274 113704 7889 205383 52404 21590 35329...
result:
ok 240899 numbers
Test #16:
score: 0
Accepted
time: 3089ms
memory: 221680kb
input:
500000 300000 laladomidofatiresomidofalamilafasomidolamidodosododofalatisosorefamitifalalaremimimimifaresotifaretifalareredomidolamimimirereredododofarerelamifamimisomilatilatidoreladoremitilatidotiremidodomlareltilasotifasomidorerefafadotilamilamirelatitiretifamiremiredomitidotisodomidodofarerelaso...
output:
3389 1454 1121 1818 4888 3291 7497 253 1247 112 1548 6499 2144 2052 2637 4753 2079 4395 4465 861 316 3436 3120 3755 5465 6243 1792 2187 3941 2588 6866 1437 3139 1221 2590 2415 285 931 5442 4917 977 7499 3351 3235 2496 7498 7498 3013 4631 5080 1251 3844 1832 575 2644 138 7498 4181 4462 935 4214 3149 ...
result:
ok 279358 numbers
Test #17:
score: 0
Accepted
time: 2936ms
memory: 221652kb
input:
500000 300000 fasofasotisomisodofasofalaladotisoreretisoreretirerefaretifafamimimitifarelaresodosofalafarefaretisotidofamimidomimifadoreretititimidolaretisofalarerefasoladotisosolafasodomisotirefamititifareresomilalamifamitilaresodotimilafafafalafalamimitiladolafaredofalamiredosodotilalafamidotilala...
output:
2 1 1 1 1 0 0 0 1 0 1 1 1 1 2 0 1 1 0 1 2 0 2 1 1 2 2 1 1 2 1 0 1 0 1 1 2 1 1 1 2 1 1 0 2 1 2 0 2 1 0 2 1 1 2 1 1 1 2 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 2 0 1 1 1 2 0 0 2 2 1 0 2 1 1 0 0 2 0 1 1 1 1 1 2 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 2 2 1 1 1 1 1 0 0 0 4 2 1 4 4 3 2 0 1 2 2 4 4 4 2 ...
result:
ok 279255 numbers
Test #18:
score: 0
Accepted
time: 3403ms
memory: 221500kb
input:
500000 300000 toffqmtaalridseeosdsomfissetamrimfariudtaotartiasaresyootrositdeodtoieflodlmtaifoefrvoaeriofmvhlusiaetrdpraudfiaoxltatomoifaaiimltdoaidsutoidafmsdiermdsseaaolmioivoleiuftifafamsomiaereomtmmdaloeomaiaaeoaaileoileoauiamoaaoaiosloadoodvaaaeatmzoimoemooousfzmdfaioadoomafafemtaartotwqrfrooi...
output:
50265 249907 163436 35665 32182 125412 70410 180463 218497 307638 59680 139099 38809 58628 51525 212099 191059 57636 169366 189774 289029 241934 2542 164485 231054 200643 131945 61048 17783 44344 3550 106392 45754 17739 165037 114385 286743 198970 19631 31360 137660 220094 45434 2235 265659 35406 93...
result:
ok 299659 numbers
Test #19:
score: 0
Accepted
time: 3399ms
memory: 221472kb
input:
500000 300000 foatiflyrroieesofektoftialirfautttliuiareoimirfiitaipematordofemirmadiriadforirtseoeeaetifrraaieoimdodaofitammoeofsiosleaoolqdrasarxdoiairilflmaomqrorroeatotiomlvduomsiarismoiiirroafcaeummgolmaatdulaeaddeoaaiolidaalrijloiaasafsartomifidzoeriiroifdadiaileofossdtitaaimoaidatopdorfmsesaos...
output:
217970 95973 296783 60569 36651 211367 151055 192059 307891 19485 26927 66091 1215 96877 91016 102186 123972 214828 101478 56922 100045 228321 131041 98247 176614 31216 97675 53159 99698 233116 82387 151956 117010 21225 90315 6806 242501 127916 1359 90652 56798 7520 15474 3004 31416 222305 155349 21...
result:
ok 295560 numbers
Test #20:
score: 0
Accepted
time: 3413ms
memory: 221520kb
input:
500000 300000 rtwldlrmjrmhedeesdoaditimoifaedooiteirfiiloaireuaottiiimlaoifdoatimoidiieaefmtaiadartasiiyoielldaaedoaaaoaeeiioifodhumosoeuoarloofuilfataafoiaoamfrodmslefiroadaaerfomorsloiafeianrdouhwosunrelooiddfrdoealailoliuliosomaoraiadafdoolraleslsirdhoeldaiousalfimiioedaeuotraloiotdssfaasolreoios...
output:
243572 13005 111931 12857 184787 73243 47721 201161 290056 49440 84147 80816 35579 84056 249519 188744 9712 156987 98535 112603 38000 295461 14465 102795 126939 123271 70805 184935 5460 64593 140560 323734 37755 49689 48096 145255 133926 87859 311047 203024 125978 131880 207021 65357 246126 124424 1...
result:
ok 297954 numbers
Test #21:
score: 0
Accepted
time: 2954ms
memory: 221552kb
input:
500000 300000 mzeoioaoasoetliteiezasfomafdpmasadsaeaimtildiefzfapmdooearoaaaelrtlilsblrmeaoaotyaloamietderoaaasoimtosiriduotedoootelassssyiolefiioiusofsicrtsdadatroarffsiloslfaedildloioiedrujtiiloatoamommdriiimsaroliaolfrtrtiasfsdtidimlfdroeioiosiaudaardrolaoorlmeiesdrosrtitfoilioaaanlaoiidadrlidmio...
output:
120759 277797 27702 271170 55527 322243 323178 226326 289472 7001 169628 193048 144912 98537 38434 89506 33706 10424 175366 167538 340437 235829 380294 64479 150998 129216 85266 387531 336736 213188 205642 370177 339035 63216 304718 34139 153626 82026 210428 111707 67518 41150 164063 56946 267996 17...
result:
ok 240912 numbers
Test #22:
score: 0
Accepted
time: 1213ms
memory: 9376kb
input:
9977 300000 muvfaooooosfasttoroeoieedriddomsfofgtratsmermrloaomrorfmrdftmmiristftclidtiifyofautsloeaafileridomeltefteameoifafioitifoiiioqalooidilauooasmmsmiefoerarlfcostraloalotiixlorisofttioomcsofiilrolfaddfiitiadidmmroeiroieaofftfaifowdmladtuaioooitolaodmtmoifdfodrfslraouiofltsooomiomiftsfriiiosia...
output:
910 4559 3662 815 1083 4636 265 2320 243 834 1428 718 464 1961 2607 2817 1886 1493 370 255 2049 1007 1086 1256 86 698 6255 3096 3264 324 62 773 576 1769 3902 128 703 1204 2340 807 4021 2492 649 2532 2778 2446 1071 2090 349 2782 1422 5003 3242 2034 4291 1089 98 64 3853 1043 406 6962 3824 1854 2860 19...
result:
ok 299980 numbers
Extra Test:
score: 0
Extra Test Passed