QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#378162 | #8566. Can We Still Qualify For Semifinals? | ucup-team635# | AC ✓ | 1ms | 2272kb | Rust | 12.0kb | 2024-04-06 08:40:29 | 2024-04-06 08:40:29 |
Judging History
answer
use std::io::Write;
use std::collections::*;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn main() {
input! {
t: usize,
ask: [(usize, bytes); t],
}
let mut e = vec![];
let mut a = (0..10).collect::<Vec<_>>();
for _ in 0..9 {
for i in 0..5 {
e.push((a[i], a[9 - i]));
}
a[1..].rotate_right(1);
}
let can = |s: Vec<u8>| -> bool {
let mut fix = vec![0; 9];
for i in 0..3 {
fix[i] = 1;
}
fix.sort();
while {
let n = s.len();
let (l, r) = e.split_at(n);
let mut cnt = vec![0i32; 10];
for (&(x, y), s) in l.iter().zip(s.iter()) {
if *s == b'1' {
cnt[x] += 1;
} else {
cnt[y] += 1;
}
}
let mut free = vec![];
for &(x, y) in r.iter() {
if x == 0 {
cnt[0] += 1;
} else if fix[x - 1] == 1 {
cnt[x] += 1;
} else if fix[y - 1] == 1 {
cnt[y] += 1;
} else {
free.push((x, y));
}
}
let up = cnt[0];
if cnt.iter().filter(|c| **c > up).count() < 4 {
let mut g = maxflow::Graph::new(free.len() + 10 + 2);
let src = free.len() + 10;
let dst = src + 1;
for i in 0..10 {
if cnt[i] < up {
g.add_edge(src, i, up - cnt[i]);
}
}
for (i, &(x, y)) in free.iter().enumerate() {
g.add_edge(10 + i, dst, 1);
g.add_edge(x, 10 + i, 1);
g.add_edge(y, 10 + i, 1);
}
let need = free.len() as i32;
if g.flow(src, dst) == need {
return true;
}
}
fix.next_permutation()
} {}
false
};
for (n, s) in ask {
let ans = if can(s) {
"YES"
} else {
"NO"
};
println!("{ans}");
}
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin max flow (Dinic) ----------
mod maxflow {
pub trait MaxFlowCapacity:
Copy + Ord + std::ops::Add<Output = Self> + std::ops::Sub<Output = Self>
{
fn zero() -> Self;
fn inf() -> Self;
}
macro_rules! impl_primitive_integer_capacity {
($x:ty, $y:expr) => {
impl MaxFlowCapacity for $x {
fn zero() -> Self {
0
}
fn inf() -> Self {
$y
}
}
};
}
impl_primitive_integer_capacity!(u32, std::u32::MAX);
impl_primitive_integer_capacity!(u64, std::u64::MAX);
impl_primitive_integer_capacity!(i32, std::i32::MAX);
impl_primitive_integer_capacity!(i64, std::i64::MAX);
#[derive(Clone)]
struct Edge<Cap> {
to_: u32,
inv_: u32,
cap_: Cap,
}
impl<Cap> Edge<Cap> {
fn new(to: usize, inv: usize, cap: Cap) -> Self {
Edge {
to_: to as u32,
inv_: inv as u32,
cap_: cap,
}
}
fn to(&self) -> usize {
self.to_ as usize
}
fn inv(&self) -> usize {
self.inv_ as usize
}
}
impl<Cap: MaxFlowCapacity> Edge<Cap> {
fn add(&mut self, cap: Cap) {
self.cap_ = self.cap_ + cap;
}
fn sub(&mut self, cap: Cap) {
self.cap_ = self.cap_ - cap;
}
fn cap(&self) -> Cap {
self.cap_
}
}
pub struct Graph<Cap> {
graph: Vec<Vec<Edge<Cap>>>,
}
#[allow(dead_code)]
pub struct EdgeIndex {
src: usize,
dst: usize,
x: usize,
y: usize,
}
impl<Cap: MaxFlowCapacity> Graph<Cap> {
pub fn new(size: usize) -> Self {
Self {
graph: vec![vec![]; size],
}
}
pub fn add_edge(&mut self, src: usize, dst: usize, cap: Cap) -> EdgeIndex {
assert!(src.max(dst) < self.graph.len());
assert!(cap >= Cap::zero());
assert!(src != dst);
let x = self.graph[src].len();
let y = self.graph[dst].len();
self.graph[src].push(Edge::new(dst, y, cap));
self.graph[dst].push(Edge::new(src, x, Cap::zero()));
EdgeIndex { src, dst, x, y }
}
// src, dst, used, intial_capacity
#[allow(dead_code)]
pub fn get_edge(&self, e: &EdgeIndex) -> (usize, usize, Cap, Cap) {
let max = self.graph[e.src][e.x].cap() + self.graph[e.dst][e.y].cap();
let used = self.graph[e.dst][e.y].cap();
(e.src, e.dst, used, max)
}
pub fn flow(&mut self, src: usize, dst: usize) -> Cap {
let size = self.graph.len();
assert!(src.max(dst) < size);
assert!(src != dst);
let mut queue = std::collections::VecDeque::new();
let mut level = vec![0; size];
let mut it = vec![0; size];
let mut ans = Cap::zero();
loop {
(|| {
level.clear();
level.resize(size, 0);
level[src] = 1;
queue.clear();
queue.push_back(src);
while let Some(v) = queue.pop_front() {
let d = level[v] + 1;
for e in self.graph[v].iter() {
let u = e.to();
if e.cap() > Cap::zero() && level[u] == 0 {
level[u] = d;
if u == dst {
return;
}
queue.push_back(u);
}
}
}
})();
if level[dst] == 0 {
break;
}
it.clear();
it.resize(size, 0);
loop {
let f = self.dfs(dst, src, Cap::inf(), &mut it, &level);
if f == Cap::zero() {
break;
}
ans = ans + f;
}
}
ans
}
fn dfs(&mut self, v: usize, src: usize, cap: Cap, it: &mut [usize], level: &[u32]) -> Cap {
if v == src {
return cap;
}
while let Some((u, inv)) = self.graph[v].get(it[v]).map(|p| (p.to(), p.inv())) {
if level[u] + 1 == level[v] && self.graph[u][inv].cap() > Cap::zero() {
let cap = cap.min(self.graph[u][inv].cap());
let c = self.dfs(u, src, cap, it, level);
if c > Cap::zero() {
self.graph[v][it[v]].add(c);
self.graph[u][inv].sub(c);
return c;
}
}
it[v] += 1;
}
Cap::zero()
}
}
}
// ---------- end max flow (Dinic) ----------
// ---------- begin super slice ----------
pub trait SuperSlice {
type Item;
fn lower_bound(&self, key: &Self::Item) -> usize
where
Self::Item: Ord;
fn lower_bound_by<F>(&self, f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering;
fn lower_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K;
fn upper_bound(&self, key: &Self::Item) -> usize
where
Self::Item: Ord;
fn upper_bound_by<F>(&self, f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering;
fn upper_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K;
fn next_permutation(&mut self) -> bool
where
Self::Item: Ord;
fn next_permutation_by<F>(&mut self, f: F) -> bool
where
F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering;
fn prev_permutation(&mut self) -> bool
where
Self::Item: Ord;
}
impl<T> SuperSlice for [T] {
type Item = T;
fn lower_bound(&self, key: &Self::Item) -> usize
where
T: Ord,
{
self.lower_bound_by(|p| p.cmp(key))
}
fn lower_bound_by<F>(&self, mut f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering,
{
self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Greater))
.unwrap_err()
}
fn lower_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K,
{
self.lower_bound_by(|p| f(p).cmp(key))
}
fn upper_bound(&self, key: &Self::Item) -> usize
where
T: Ord,
{
self.upper_bound_by(|p| p.cmp(key))
}
fn upper_bound_by<F>(&self, mut f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering,
{
self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Less))
.unwrap_err()
}
fn upper_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K,
{
self.upper_bound_by(|p| f(p).cmp(key))
}
fn next_permutation(&mut self) -> bool
where
T: Ord,
{
self.next_permutation_by(|a, b| a.cmp(b))
}
fn next_permutation_by<F>(&mut self, mut f: F) -> bool
where
F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering,
{
use std::cmp::Ordering::*;
if let Some(x) = self.windows(2).rposition(|a| f(&a[0], &a[1]) == Less) {
let y = self.iter().rposition(|b| f(&self[x], b) == Less).unwrap();
self.swap(x, y);
self[(x + 1)..].reverse();
true
} else {
self.reverse();
false
}
}
fn prev_permutation(&mut self) -> bool
where
T: Ord,
{
self.next_permutation_by(|a, b| a.cmp(b).reverse())
}
}
// ---------- end super slice ----------
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2156kb
input:
3 3 111 25 1000010101111111111010100 35 01111011110111101111011110111101111
output:
YES YES NO
result:
ok 3 token(s): yes count is 2, no count is 1
Test #2:
score: 0
Accepted
time: 0ms
memory: 2160kb
input:
10 16 0110000001010100 17 01111000110110101 15 001100010101111 16 0010101010011100 19 0000000100010110100 16 0011101010011100 18 011110010001100000 18 000110101001100011 20 01100010000100100100 15 001000111001101
output:
YES YES YES YES YES YES YES YES YES YES
result:
ok 10 token(s): yes count is 10, no count is 0
Test #3:
score: 0
Accepted
time: 0ms
memory: 2132kb
input:
10 37 0110000001010100011101001011100110001 39 000100111101101001100101101000000000100 35 00111000100111100101011010111100100 33 010000010001110010110001101110001 30 000100010100000010010110101010 31 0000101000011010101001010000000 44 00001000000111101011010110000101100011000100 42 01111011110001001...
output:
NO NO NO NO NO NO NO NO NO NO
result:
ok 10 token(s): yes count is 0, no count is 10
Test #4:
score: 0
Accepted
time: 0ms
memory: 2152kb
input:
10 23 01100000010101000111010 38 01111001100011000101011110101001101001 27 010000000001001001110001001 26 01101001110011101101000110 8 00001000 22 0110100110001110110001 9 000100010 24 000000100101101010100100 6 011000 29 01101010100101000000000000100
output:
YES NO NO NO YES YES YES YES YES NO
result:
ok 10 token(s): yes count is 6, no count is 4
Test #5:
score: 0
Accepted
time: 0ms
memory: 2272kb
input:
10 30 011000000101010001110100101110 29 01001010010011101110010110010 28 0110000000001000101101001001 23 01101001110011101101000 23 01000001000111001011000 24 011110001000010001010000 23 01001011010101001000011 30 000110011001010010000000000010 24 000110111001110011000011 28 000110001000011011110110...
output:
NO NO NO YES YES YES YES NO YES NO
result:
ok 10 token(s): yes count is 5, no count is 5
Test #6:
score: 0
Accepted
time: 0ms
memory: 2092kb
input:
10 21 011000000101010001110 21 000110110101001010010 22 0111101101001100101101 24 000000001000101011000101 21 011010011100111011010 20 00110000010001101010 21 010010111100010000100 24 010100000100011010110010 23 00001010000110101010010 25 0000000000001000001101110
output:
YES YES YES YES YES YES YES YES YES YES
result:
ok 10 token(s): yes count is 10, no count is 0
Test #7:
score: 0
Accepted
time: 0ms
memory: 2136kb
input:
10 26 01100000010101000111010010 26 01101010010100100111011100 26 00110010110100000000010010 27 011100010101110010110101101 30 010100011000001000110101001100 30 011110001000010001010000001001 28 0101100101000010100001101010 26 00101000000000000100000110 28 0110101101010000111000110001 27 00011011110...
output:
NO NO NO NO NO NO NO NO NO NO
result:
ok 10 token(s): yes count is 0, no count is 10
Test #8:
score: 0
Accepted
time: 1ms
memory: 2124kb
input:
10 25 0010100010011010111001111 26 01001010100010101010001010 26 01111001110000100111011110 26 10001000100110101110011110 26 10101010100110101110011110 27 110100010101010011010111001 27 101010101001101011100111101 31 1000010001010100110001011011110 37 1000101111000100110000011000000100101 40 1000101...
output:
NO NO NO NO NO NO NO NO NO NO
result:
ok 10 token(s): yes count is 0, no count is 10
Test #9:
score: 0
Accepted
time: 0ms
memory: 2104kb
input:
10 26 00001010000000000000000000 26 00000010000000000000000000 26 01101010100010101011011110 26 00011011110111101111011110 27 001100110101011001110111101 27 000110111101111011110111101 28 0110001001000010011101111011 29 01000000010001101000011110111 29 01000000010000101101011110111 30 01000011110111...
output:
YES YES YES YES YES YES YES YES YES NO
result:
ok 10 token(s): yes count is 9, no count is 1
Test #10:
score: 0
Accepted
time: 0ms
memory: 2076kb
input:
10 1 0 2 00 10 0001101110 14 00101010000011 20 00000010010100101010 25 0000000101000100100001111 35 01110011010000101010000010010000100 40 0000100110001110101100001001000110000001 44 01011010110010101110011000010001010011100011 45 010010001001010011110111101011011000000100001
output:
YES YES YES YES YES YES NO NO NO NO
result:
ok 10 token(s): yes count is 6, no count is 4
Extra Test:
score: 0
Extra Test Passed