QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#378162#8566. Can We Still Qualify For Semifinals?ucup-team635#AC ✓1ms2272kbRust12.0kb2024-04-06 08:40:292024-04-06 08:40:29

Judging History

你现在查看的是最新测评结果

  • [2024-04-06 08:40:29]
  • 评测
  • 测评结果:AC
  • 用时:1ms
  • 内存:2272kb
  • [2024-04-06 08:40:29]
  • 提交

answer

use std::io::Write;
use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn main() {
    input! {
        t: usize,
        ask: [(usize, bytes); t],
    }
    let mut e = vec![];
    let mut a = (0..10).collect::<Vec<_>>();
    for _ in 0..9 {
        for i in 0..5 {
            e.push((a[i], a[9 - i]));
        }
        a[1..].rotate_right(1);
    }
    let can = |s: Vec<u8>| -> bool {
        let mut fix = vec![0; 9];
        for i in 0..3 {
            fix[i] = 1;
        }
        fix.sort();
        while {
            let n = s.len();
            let (l, r) = e.split_at(n);
            let mut cnt = vec![0i32; 10];
            for (&(x, y), s) in l.iter().zip(s.iter()) {
                if *s == b'1' {
                    cnt[x] += 1;
                } else {
                    cnt[y] += 1;
                }
            }
            let mut free = vec![];
            for &(x, y) in r.iter() {
                if x == 0 {
                    cnt[0] += 1;
                } else if fix[x - 1] == 1 {
                    cnt[x] += 1;
                } else if fix[y - 1] == 1 {
                    cnt[y] += 1;
                } else {
                    free.push((x, y));
                }
            }
            let up = cnt[0];
            if cnt.iter().filter(|c| **c > up).count() < 4 {
                let mut g = maxflow::Graph::new(free.len() + 10 + 2);
                let src = free.len() + 10;
                let dst = src + 1;
                for i in 0..10 {
                    if cnt[i] < up {
                        g.add_edge(src, i, up - cnt[i]);
                    }
                }
                for (i, &(x, y)) in free.iter().enumerate() {
                    g.add_edge(10 + i, dst, 1);
                    g.add_edge(x, 10 + i, 1);
                    g.add_edge(y, 10 + i, 1);
                }
                let need = free.len() as i32;
                if g.flow(src, dst) == need {
                    return true;
                }
            }
            fix.next_permutation()
        } {}
        false
    };
    for (n, s) in ask {
        let ans = if can(s) {
            "YES"
        } else {
            "NO"
        };
        println!("{ans}");
    }
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin max flow (Dinic) ----------
mod maxflow {
    pub trait MaxFlowCapacity:
        Copy + Ord + std::ops::Add<Output = Self> + std::ops::Sub<Output = Self>
    {
        fn zero() -> Self;
        fn inf() -> Self;
    }

    macro_rules! impl_primitive_integer_capacity {
        ($x:ty, $y:expr) => {
            impl MaxFlowCapacity for $x {
                fn zero() -> Self {
                    0
                }
                fn inf() -> Self {
                    $y
                }
            }
        };
    }

    impl_primitive_integer_capacity!(u32, std::u32::MAX);
    impl_primitive_integer_capacity!(u64, std::u64::MAX);
    impl_primitive_integer_capacity!(i32, std::i32::MAX);
    impl_primitive_integer_capacity!(i64, std::i64::MAX);

    #[derive(Clone)]
    struct Edge<Cap> {
        to_: u32,
        inv_: u32,
        cap_: Cap,
    }

    impl<Cap> Edge<Cap> {
        fn new(to: usize, inv: usize, cap: Cap) -> Self {
            Edge {
                to_: to as u32,
                inv_: inv as u32,
                cap_: cap,
            }
        }
        fn to(&self) -> usize {
            self.to_ as usize
        }
        fn inv(&self) -> usize {
            self.inv_ as usize
        }
    }

    impl<Cap: MaxFlowCapacity> Edge<Cap> {
        fn add(&mut self, cap: Cap) {
            self.cap_ = self.cap_ + cap;
        }
        fn sub(&mut self, cap: Cap) {
            self.cap_ = self.cap_ - cap;
        }
        fn cap(&self) -> Cap {
            self.cap_
        }
    }

    pub struct Graph<Cap> {
        graph: Vec<Vec<Edge<Cap>>>,
    }

    #[allow(dead_code)]
    pub struct EdgeIndex {
        src: usize,
        dst: usize,
        x: usize,
        y: usize,
    }

    impl<Cap: MaxFlowCapacity> Graph<Cap> {
        pub fn new(size: usize) -> Self {
            Self {
                graph: vec![vec![]; size],
            }
        }
        pub fn add_edge(&mut self, src: usize, dst: usize, cap: Cap) -> EdgeIndex {
            assert!(src.max(dst) < self.graph.len());
            assert!(cap >= Cap::zero());
            assert!(src != dst);
            let x = self.graph[src].len();
            let y = self.graph[dst].len();
            self.graph[src].push(Edge::new(dst, y, cap));
            self.graph[dst].push(Edge::new(src, x, Cap::zero()));
            EdgeIndex { src, dst, x, y }
        }
        // src, dst, used, intial_capacity
        #[allow(dead_code)]
        pub fn get_edge(&self, e: &EdgeIndex) -> (usize, usize, Cap, Cap) {
            let max = self.graph[e.src][e.x].cap() + self.graph[e.dst][e.y].cap();
            let used = self.graph[e.dst][e.y].cap();
            (e.src, e.dst, used, max)
        }
        pub fn flow(&mut self, src: usize, dst: usize) -> Cap {
            let size = self.graph.len();
            assert!(src.max(dst) < size);
            assert!(src != dst);
            let mut queue = std::collections::VecDeque::new();
            let mut level = vec![0; size];
            let mut it = vec![0; size];
            let mut ans = Cap::zero();
            loop {
                (|| {
                    level.clear();
                    level.resize(size, 0);
                    level[src] = 1;
                    queue.clear();
                    queue.push_back(src);
                    while let Some(v) = queue.pop_front() {
                        let d = level[v] + 1;
                        for e in self.graph[v].iter() {
                            let u = e.to();
                            if e.cap() > Cap::zero() && level[u] == 0 {
                                level[u] = d;
                                if u == dst {
                                    return;
                                }
                                queue.push_back(u);
                            }
                        }
                    }
                })();
                if level[dst] == 0 {
                    break;
                }
                it.clear();
                it.resize(size, 0);
                loop {
                    let f = self.dfs(dst, src, Cap::inf(), &mut it, &level);
                    if f == Cap::zero() {
                        break;
                    }
                    ans = ans + f;
                }
            }
            ans
        }
        fn dfs(&mut self, v: usize, src: usize, cap: Cap, it: &mut [usize], level: &[u32]) -> Cap {
            if v == src {
                return cap;
            }
            while let Some((u, inv)) = self.graph[v].get(it[v]).map(|p| (p.to(), p.inv())) {
                if level[u] + 1 == level[v] && self.graph[u][inv].cap() > Cap::zero() {
                    let cap = cap.min(self.graph[u][inv].cap());
                    let c = self.dfs(u, src, cap, it, level);
                    if c > Cap::zero() {
                        self.graph[v][it[v]].add(c);
                        self.graph[u][inv].sub(c);
                        return c;
                    }
                }
                it[v] += 1;
            }
            Cap::zero()
        }
    }
}
// ---------- end max flow (Dinic) ----------
// ---------- begin super slice ----------
pub trait SuperSlice {
    type Item;
    fn lower_bound(&self, key: &Self::Item) -> usize
    where
        Self::Item: Ord;
    fn lower_bound_by<F>(&self, f: F) -> usize
    where
        F: FnMut(&Self::Item) -> std::cmp::Ordering;
    fn lower_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
    where
        K: Ord,
        F: FnMut(&Self::Item) -> K;
    fn upper_bound(&self, key: &Self::Item) -> usize
    where
        Self::Item: Ord;
    fn upper_bound_by<F>(&self, f: F) -> usize
    where
        F: FnMut(&Self::Item) -> std::cmp::Ordering;
    fn upper_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
    where
        K: Ord,
        F: FnMut(&Self::Item) -> K;
    fn next_permutation(&mut self) -> bool
    where
        Self::Item: Ord;
    fn next_permutation_by<F>(&mut self, f: F) -> bool
    where
        F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering;
    fn prev_permutation(&mut self) -> bool
    where
        Self::Item: Ord;
}

impl<T> SuperSlice for [T] {
    type Item = T;
    fn lower_bound(&self, key: &Self::Item) -> usize
    where
        T: Ord,
    {
        self.lower_bound_by(|p| p.cmp(key))
    }
    fn lower_bound_by<F>(&self, mut f: F) -> usize
    where
        F: FnMut(&Self::Item) -> std::cmp::Ordering,
    {
        self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Greater))
            .unwrap_err()
    }
    fn lower_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
    where
        K: Ord,
        F: FnMut(&Self::Item) -> K,
    {
        self.lower_bound_by(|p| f(p).cmp(key))
    }
    fn upper_bound(&self, key: &Self::Item) -> usize
    where
        T: Ord,
    {
        self.upper_bound_by(|p| p.cmp(key))
    }
    fn upper_bound_by<F>(&self, mut f: F) -> usize
    where
        F: FnMut(&Self::Item) -> std::cmp::Ordering,
    {
        self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Less))
            .unwrap_err()
    }
    fn upper_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
    where
        K: Ord,
        F: FnMut(&Self::Item) -> K,
    {
        self.upper_bound_by(|p| f(p).cmp(key))
    }
    fn next_permutation(&mut self) -> bool
    where
        T: Ord,
    {
        self.next_permutation_by(|a, b| a.cmp(b))
    }
    fn next_permutation_by<F>(&mut self, mut f: F) -> bool
    where
        F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering,
    {
        use std::cmp::Ordering::*;
        if let Some(x) = self.windows(2).rposition(|a| f(&a[0], &a[1]) == Less) {
            let y = self.iter().rposition(|b| f(&self[x], b) == Less).unwrap();
            self.swap(x, y);
            self[(x + 1)..].reverse();
            true
        } else {
            self.reverse();
            false
        }
    }
    fn prev_permutation(&mut self) -> bool
    where
        T: Ord,
    {
        self.next_permutation_by(|a, b| a.cmp(b).reverse())
    }
}
// ---------- end super slice ----------

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 2156kb

input:

3
3
111
25
1000010101111111111010100
35
01111011110111101111011110111101111

output:

YES
YES
NO

result:

ok 3 token(s): yes count is 2, no count is 1

Test #2:

score: 0
Accepted
time: 0ms
memory: 2160kb

input:

10
16
0110000001010100
17
01111000110110101
15
001100010101111
16
0010101010011100
19
0000000100010110100
16
0011101010011100
18
011110010001100000
18
000110101001100011
20
01100010000100100100
15
001000111001101

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

result:

ok 10 token(s): yes count is 10, no count is 0

Test #3:

score: 0
Accepted
time: 0ms
memory: 2132kb

input:

10
37
0110000001010100011101001011100110001
39
000100111101101001100101101000000000100
35
00111000100111100101011010111100100
33
010000010001110010110001101110001
30
000100010100000010010110101010
31
0000101000011010101001010000000
44
00001000000111101011010110000101100011000100
42
01111011110001001...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #4:

score: 0
Accepted
time: 0ms
memory: 2152kb

input:

10
23
01100000010101000111010
38
01111001100011000101011110101001101001
27
010000000001001001110001001
26
01101001110011101101000110
8
00001000
22
0110100110001110110001
9
000100010
24
000000100101101010100100
6
011000
29
01101010100101000000000000100

output:

YES
NO
NO
NO
YES
YES
YES
YES
YES
NO

result:

ok 10 token(s): yes count is 6, no count is 4

Test #5:

score: 0
Accepted
time: 0ms
memory: 2272kb

input:

10
30
011000000101010001110100101110
29
01001010010011101110010110010
28
0110000000001000101101001001
23
01101001110011101101000
23
01000001000111001011000
24
011110001000010001010000
23
01001011010101001000011
30
000110011001010010000000000010
24
000110111001110011000011
28
000110001000011011110110...

output:

NO
NO
NO
YES
YES
YES
YES
NO
YES
NO

result:

ok 10 token(s): yes count is 5, no count is 5

Test #6:

score: 0
Accepted
time: 0ms
memory: 2092kb

input:

10
21
011000000101010001110
21
000110110101001010010
22
0111101101001100101101
24
000000001000101011000101
21
011010011100111011010
20
00110000010001101010
21
010010111100010000100
24
010100000100011010110010
23
00001010000110101010010
25
0000000000001000001101110

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

result:

ok 10 token(s): yes count is 10, no count is 0

Test #7:

score: 0
Accepted
time: 0ms
memory: 2136kb

input:

10
26
01100000010101000111010010
26
01101010010100100111011100
26
00110010110100000000010010
27
011100010101110010110101101
30
010100011000001000110101001100
30
011110001000010001010000001001
28
0101100101000010100001101010
26
00101000000000000100000110
28
0110101101010000111000110001
27
00011011110...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #8:

score: 0
Accepted
time: 1ms
memory: 2124kb

input:

10
25
0010100010011010111001111
26
01001010100010101010001010
26
01111001110000100111011110
26
10001000100110101110011110
26
10101010100110101110011110
27
110100010101010011010111001
27
101010101001101011100111101
31
1000010001010100110001011011110
37
1000101111000100110000011000000100101
40
1000101...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 0, no count is 10

Test #9:

score: 0
Accepted
time: 0ms
memory: 2104kb

input:

10
26
00001010000000000000000000
26
00000010000000000000000000
26
01101010100010101011011110
26
00011011110111101111011110
27
001100110101011001110111101
27
000110111101111011110111101
28
0110001001000010011101111011
29
01000000010001101000011110111
29
01000000010000101101011110111
30
01000011110111...

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
NO

result:

ok 10 token(s): yes count is 9, no count is 1

Test #10:

score: 0
Accepted
time: 0ms
memory: 2076kb

input:

10
1
0
2
00
10
0001101110
14
00101010000011
20
00000010010100101010
25
0000000101000100100001111
35
01110011010000101010000010010000100
40
0000100110001110101100001001000110000001
44
01011010110010101110011000010001010011100011
45
010010001001010011110111101011011000000100001

output:

YES
YES
YES
YES
YES
YES
NO
NO
NO
NO

result:

ok 10 token(s): yes count is 6, no count is 4

Extra Test:

score: 0
Extra Test Passed