QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#377512 | #5505. Great Chase | ckiseki# | AC ✓ | 551ms | 50040kb | C++20 | 2.7kb | 2024-04-05 14:38:48 | 2024-04-05 14:38:49 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define all(x) begin(x), end(x)
#ifdef CKISEKI
#define safe cerr << __PRETTY_FUNCTION__ << " line " << __LINE__ << " safe\n"
#define debug(a...) debug_(#a, a)
#define orange(a...) orange_(#a, a)
void debug_(auto s, auto ...a) {
cerr << "\e[1;32m(" << s << ") = (";
int f = 0;
(..., (cerr << (f++ ? ", " : "") << a));
cerr << ")\e[0m\n";
}
#include <experimental/iterator>
void orange_(auto s, auto L, auto R) {
cerr << "\e[1;33m[ " << s << " ] = [ ";
using namespace experimental;
copy(L, R, make_ostream_joiner(cerr, ", "));
cerr << " ]\e[0m\n";
}
#else
#define safe ((void)0)
#define debug(...) safe
#define orange(...) safe
#endif
using lld = int64_t;
using llf = long double;
using P = complex<lld>;
int sgn(lld x) {
return (x > 0) - (x < 0);
}
lld cross(P a, P b) {
return imag(conj(a) * b);
}
int ori(P a, P b, P c) {
return sgn(cross(b - a, c - a));
}
namespace std {
bool operator<(P a, P b) {
return make_pair(real(a), imag(a)) < make_pair(real(b), imag(b));
}
}
vector<P> convex_hull(vector<P> v) {
sort(all(v));
if (v[0] == v.back()) return {v[0]};
int t = 0, s = 1; vector<P> h(v.size() + 1);
for (int _ = 2; _--; s = t--, reverse(all(v)))
for (P p : v) {
while (t > s && ori(p, h[t - 1], h[t - 2]) >= 0) t--;
h[t++] = p;
}
return h.resize(t), h;
}
vector<P> Minkowski(vector<P> A, vector<P> B) {
const int N = (int)A.size(), M = (int)B.size();
vector<P> sa(N), sb(M), C(N + M + 1);
for (int i = 0; i < N; i++) sa[i] = A[(i + 1) % N] - A[i];
for (int i = 0; i < M; i++) sb[i] = B[(i + 1) % M] - B[i];
C[0] = A[0] + B[0];
for (int i = 0, j = 0; i < N || j < M; ) {
P e = (j >= M || (i < N && cross(sa[i], sb[j]) >= 0))
? sa[i++] : sb[j++];
C[i + j] = e;
}
partial_sum(all(C), C.begin());
C.pop_back();
return convex_hull(C);
}
llf slope(P z) {
return imag(z) / llf(real(z));
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int T;
cin >> T;
while (T--) {
int n, v;
cin >> n >> v;
vector<P> l, r;
for (int i = 0; i < n; i++) {
int64_t p;
int vi;
cin >> p >> vi;
if (p < 0) {
l.emplace_back(vi, -p);
} else {
r.emplace_back(vi, p);
}
}
l = convex_hull(l);
r = convex_hull(r);
long double t = 1e18;
if (l.size() <= 2 || r.size() <= 2) {
for (auto a : l)
for (auto b : r) {
debug(a + b, slope(a + b));
t = min(t, slope(a + b));
}
} else {
orange(all(l));
orange(all(r));
for (auto p : Minkowski(l, r)) {
debug(p, slope(p));
t = min(t, slope(p));
}
}
cout << fixed << setprecision(20);
cout << t * v << '\n';
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3820kb
input:
3 4 9 10 2 -7 2 -6 1 7 1 2 8 -1 7 1 6 2 3 -1000000000000 1 1000000000000 1
output:
38.25000000000000000000 1.23076923076923076925 3000000000000.00000000000000000000
result:
ok 3 numbers
Test #2:
score: 0
Accepted
time: 326ms
memory: 4036kb
input:
10000 200 997007 405524182320 754760 686939601648 419804 687047488212 715566 1446157132 4594 -670522037 4673 763634629282 253755 424307411732 275041 1582708381 8473 -667425982 4622 -522841486 1427 702430907988 460271 1405423646 1060 1497754648 6227 883363410675 723547 56899800372 46435 -810216390 64...
output:
145405766328.34911003708839416504 16414958969.72728119045495986938 5202715639.83518389984965324402 321977234.15632586897118017077 45384199210.22168397158384323120 183885744.76923076923412736505 1708925225.23047235794365406036 89786664971.55794263631105422974 13924365606.28738879505544900894 41297532...
result:
ok 10000 numbers
Test #3:
score: 0
Accepted
time: 414ms
memory: 6128kb
input:
93 15435 968117 4196666 184 -5069875 255 -9782648 980 -1978138 176 9333323 764 -4323540 12 -8442049 319 -5371878 137 2881306 10 -4050629 133 -4659099 59 -5189169 320 -2256647 99 -3686648 37 1059255 33 -223142 20 8040933 408 8407764 705 694547 38 -7913614 746 -3573355 132 5919585 189 -3756662 94 -795...
output:
189662921.36363636363239493221 197971181.33333333332848269492 997533531.73762959247687831521 6439673170.66574178496375679970 993821598110.66107785701751708984 22727977326.40266098640859127045 34702455207.51850403100252151489 677770533.92981749866157770157 46631726883.96913323551416397095 5446481867....
result:
ok 93 numbers
Test #4:
score: 0
Accepted
time: 551ms
memory: 50040kb
input:
5 400000 999972 172811492468 106699 171900177092 102097 194121748377 184014 190302947556 172722 183121572232 149212 196566712700 190884 171376795991 99358 522927044000 159597 -129031052077 34395 189422320931 170012 -275879974024 638546 408864707565 98475 -106703244806 368801 192128798630 178213 2915...
output:
519985220219.81177088618278503418 511413015796.76647537946701049805 424240880533.63402035832405090332 518849481155.50391876697540283203 1882496988186.44400000572204589844
result:
ok 5 numbers
Test #5:
score: 0
Accepted
time: 475ms
memory: 17428kb
input:
38 16668 999947 -3844782803 511 -210897941456 464872 618726004990 714384 -954596898686 225256 96675744 1148 -1515974078 11375 -206213840984 706184 306078847 3947 -474818331950 391451 -616022698917 561244 123378707 1540 -640636592655 406006 459201391325 908506 -733249583 5719 496163273 6238 619876911...
output:
89670748252.97860801219940185547 98630840901.50760696083307266235 29393530999.89432778954505920410 50801000770.95598542317748069763 39668001027.26933134347200393677 467846478226.41137081384658813477 30789914370.57431161217391490936 23151476830.90509843453764915466 51606123416.62582759186625480652 15...
result:
ok 38 numbers