#include <cmath>
#include <deque>
#include <numeric>
#include <optional>
#include <span>
#include <vector>
constexpr double EPS = 1e-10;
constexpr int sign(double x) {
return x < -EPS ? -1 : EPS < x;
}
constexpr double sqr_diff(double a, double b) {
return (a + b) * (a - b);
}
struct Point {
double x = 0, y = 0;
Point() = default;
Point(double x, double y) : x(x), y(y){};
auto len2() const {
return x * x + y * y;
}
auto len() const {
return std::hypot(x, y);
}
Point operator-() const {
return {-x, -y};
}
Point operator*(double k) const {
return {x * k, y * k};
}
Point operator/(double k) const {
return {x / k, y / k};
}
Point unit() const {
return *this / len();
}
Point normal() const {
return {-y, x};
}
auto angle() const {
return std::atan2(y, x);
}
};
using Vector = Point;
using Line = std::pair<Point, Point>;
using Segment = Line;
using Circle = std::pair<Point, double>;
using Polygon = std::vector<Point>;
using Triangle = std::tuple<Point, Point, Point>;
Vector operator+(const Vector &a, const Vector &b) {
return {a.x + b.x, a.y + b.y};
}
Vector operator-(const Vector &a, const Vector &b) {
return {a.x - b.x, a.y - b.y};
}
Vector operator*(double k, const Vector &a) {
return {a.x * k, a.y * k};
}
auto operator==(const Point &A, const Point &B) {
return sign((A - B).len()) == 0;
}
auto dot(const Vector &a, const Vector &b) {
return a.x * b.x + a.y * b.y;
}
auto det(const Vector &a, const Vector &b) {
return a.x * b.y - a.y * b.x;
}
auto middle(const Point &A, const Point &B) {
return 0.5 * (A + B);
}
auto vec(const Line &l) {
return l.second - l.first;
}
auto len(const Segment &s) {
return vec(s).len();
}
auto len2(const Segment &s) {
return vec(s).len2();
}
auto angle(const Vector &a, const Vector &b) {
auto tmp = a.len() * b.len();
return sign(sqrt(tmp)) == 0 ? 0 : acos(dot(a, b) / tmp);
}
enum class Side : int { left = -1, on = 0, right = 1 };
auto side_of_line(const Point &P, const Line &l) {
const auto &[A, B] = l;
return Side(sign(det(P - A, B - A)));
}
auto projection(const Point &P, const Line &l) {
const auto &[A, B] = l;
Vector v = B - A;
return A + dot(v, P - A) * v / v.len2();
}
auto symmetry(const Point &P, const Line &l) {
return 2 * projection(P, l) - P;
}
auto point_line_distance(const Point &P, const Line &l) {
const auto &[A, B] = l;
Vector v1 = B - A, v2 = P - A;
return std::fabs(det(v1, v2) / v1.len());
}
auto point_on_segment(const Point &P, const Segment &s) {
const auto &[A, B] = s;
return side_of_line(P, {A, B}) == Side::on && sign(dot(A - P, B - P)) <= 0;
}
auto point_segment_distance(const Point &P, const Segment &s) {
const auto &[A, B] = s;
auto v1 = B - A, v2 = P - A, v3 = P - B;
if (sign(dot(v1, v2)) < 0) {
return v2.len();
}
if (sign(dot(v1, v3)) > 0) {
return v3.len();
}
return det(v1, v2) / v1.len();
}
auto parallel(const Line &l1, const Line &l2) {
return sign(det(vec(l1), vec(l2))) == 0;
}
enum class LineLineRelation { parallel, identical, intersecting };
auto line_intersection(const Line &l1, const Line &l2)
-> std::pair<LineLineRelation, std::optional<Point>> {
const auto &[A, B] = l1;
const auto &[C, D] = l2;
if (parallel(l1, l2)) {
if (side_of_line(A, l2) == Side::on) {
return {LineLineRelation::identical, std::nullopt};
}
return {LineLineRelation::parallel, std::nullopt};
}
double s1 = det(D - A, C - A);
double s2 = det(C - B, D - B);
return {LineLineRelation::intersecting, A + (B - A) * (s1 / (s1 + s2))};
}
enum class SegmentSegmentRelation { disjoint, intersecting, touching };
auto segment_intersection(const Segment &s1, const Segment &s2)
-> std::pair<SegmentSegmentRelation, std::optional<Point>> {
const auto &[A, B] = s1;
const auto &[C, D] = s2;
auto [relation, p] = line_intersection(s1, s2);
switch (relation) {
using enum LineLineRelation;
case parallel:
return {SegmentSegmentRelation::disjoint, std::nullopt};
case identical: {
if (sign(dot(C - A, C - B)) <= 0 || sign(dot(D - A, D - B)) <= 0
|| sign(dot(A - C, A - D)) <= 0 || sign(dot(B - C, B - D)) <= 0) {
return {SegmentSegmentRelation::touching, std::nullopt};
}
return {SegmentSegmentRelation::disjoint, std::nullopt};
}
case intersecting: {
auto O = p.value();
if (sign(dot(O - A, O - A)) <= 0 && sign(dot(O - C, O - D)) <= 0) {
return {SegmentSegmentRelation::intersecting, O};
}
return {SegmentSegmentRelation::disjoint, std::nullopt};
}
}
}
auto triangle_area(const Triangle &t) {
const auto &[A, B, C] = t;
return det(B - A, C - A) * 0.5;
}
enum class PointShapeRelation : int { inside = -1, on = 0, outside = 1 };
auto point_circle_relation(const Point &P, const Circle &c) {
const auto &[O, r] = c;
auto d = (P - O).len();
return PointShapeRelation(sign(r - d));
}
enum class CircleCircleRelation {
identital,
disjoint,
externally_tangent,
internally_tangent_1_to_2,
internally_tangent_2_to_1,
circle1_contains_circle2,
circle2_contains_circle1,
intersecting,
};
auto circie_circle_relation(const Circle &c1, const Circle &c2) {
using enum CircleCircleRelation;
const auto &[O1, r1] = c1;
const auto &[O2, r2] = c2;
auto d = (O2 - O1).len();
if (sign(d) == 0 && sign(r1 - r2) == 0) {
return identital;
}
switch (sign(d - r1 - r2)) {
case 0:
return externally_tangent;
case 1:
return disjoint;
default:
switch (sign(d - std::fabs(r1 - r2))) {
case 0:
return r1 > r2 ? internally_tangent_2_to_1 : internally_tangent_1_to_2;
case -1:
return r1 > r2 ? circle1_contains_circle2 : circle2_contains_circle1;
default:
return intersecting;
}
}
}
auto circle_circle_intersection(
const Circle &c1, const Circle &c2
) -> std::pair<CircleCircleRelation, std::variant<std::monostate, Point, std::pair<Point, Point>>> {
const auto &[O1, r1] = c1;
const auto &[O2, r2] = c2;
auto relation = circie_circle_relation(c1, c2);
auto d = (O2 - O1).len();
auto d1 = 0.5 * (d + sqr_diff(r1, r2) / d);
auto H = O1 + d1 * (O2 - O1) / d;
switch (relation) {
using enum CircleCircleRelation;
case disjoint:
case identital:
case circle1_contains_circle2:
case circle2_contains_circle1:
return {relation, std::monostate()};
case externally_tangent:
case internally_tangent_1_to_2:
case internally_tangent_2_to_1:
return {relation, H};
case intersecting: {
auto v = (O2 - O1).unit().normal() * sqrt(sqr_diff(r1, d1));
return {relation, std::make_pair(H + v, H - v)};
}
}
}
enum class CircleLineRelation { intersecting = -1, tangent = 0, disjoint = 1 };
auto circle_line_relation(const Circle &c, const Line &l) {
const auto &[O, r] = c;
auto d = point_line_distance(O, l);
return CircleLineRelation(sign(r - d));
}
auto circle_line_intersection(const Circle &c, const Line &l)
-> std::pair<CircleLineRelation, std::variant<std::monostate, Point, std::pair<Point, Point>>> {
const auto &[O, r] = c;
const auto &[A, B] = l;
Point H = projection(O, l);
auto relation = circle_line_relation(c, l);
switch (relation) {
using enum CircleLineRelation;
case disjoint:
return {relation, std::monostate()};
case tangent:
return {relation, H};
case intersecting:
double d = (H - O).len();
auto v = (A - B).unit() * sqrt(sqr_diff(r, d));
return {relation, std::make_pair(H + v, H - v)};
}
}
auto circle_point_tangent(const Circle &c, const Point &P)
-> std::pair<PointShapeRelation, std::variant<std::monostate, Point, std::pair<Point, Point>>> {
const auto &[O, r] = c;
auto relation = point_circle_relation(P, c);
switch (relation) {
using enum PointShapeRelation;
case inside:
return {relation, std::monostate()};
case on:
return {relation, P};
case outside:
auto d = (P - O).len();
auto H = O + (P - O) * (r * r / d);
auto v = (P - O).unit().normal() * sqrt(sqr_diff(r, d));
return {relation, std::make_pair(H + v, H - v)};
}
}
auto circumscribed_circle(const Triangle &t) {
const auto &[A, B, C] = t;
auto [relation, O] = line_intersection(
{middle(A, B), middle(A, B) + (A - B).normal()},
{middle(B, C), middle(B, C) + (B - C).normal()}
);
return relation == LineLineRelation::intersecting
? std::optional<Circle>{Circle{O.value(), (O.value() - A).len()}}
: std::nullopt;
}
auto inscribed_circle(const Triangle &t) {
const auto &[A, B, C] = t;
auto a = (B - C).len(), b = (C - A).len(), c = (A - B).len();
auto I = (A * a + B * b + C * c) / (a + b + c);
double d = point_line_distance(I, {A, B});
return sign(d) == 0 ? std::nullopt : std::optional<Circle>{Circle{I, d}};
}
auto external_co_tangent(const Circle &c1, const Circle &c2)
-> std::variant<std::monostate, Line, std::pair<Line, Line>> {
const auto &[O1, r1] = c1;
const auto &[O2, r2] = c2;
if (r1 < r2) {
return external_co_tangent(c2, c1);
}
const auto &[relation, p] = circle_point_tangent({O1, r1 - r2}, O2);
switch (relation) {
using enum PointShapeRelation;
case inside:
return std::monostate();
case on: {
const auto &P = std::get<1>(p);
return Line{P, P + (O1 - P).normal()};
}
case outside:
const auto &[P1, P2] = std::get<2>(p);
auto v1 = (P1 - O1).unit() * r2;
auto v2 = (P2 - O1).unit() * r2;
return std::make_pair(Line{P1 + v1, P2 + v2}, Line{O1 + v1, O2 + v2});
}
}
auto internal_co_tangent(const Circle &c1, const Circle &c2)
-> std::variant<std::monostate, Line, std::pair<Line, Line>> {
const auto &[O1, r1] = c1;
const auto &[O2, r2] = c2;
if (r1 < r2) {
return internal_co_tangent(c2, c1);
}
const auto &[relation, p] = circle_point_tangent({O1, r1 + r2}, O2);
switch (relation) {
using enum PointShapeRelation;
case inside:
return std::monostate();
case on: {
const auto &P = std::get<1>(p);
return Line{P, P + (O1 - P).normal()};
}
case outside: {
const auto &[P1, P2] = std::get<2>(p);
auto v1 = (P1 - O1).unit() * r2;
auto v2 = (P2 - O1).unit() * r2;
return {std::make_pair(Line{P1 - v1, O2 + v1}, Line{P2 - v2, O2 + v1})};
}
}
}
auto convex_hull(std::vector<Point> points) {
if (points.size() <= 2) {
return points;
}
int n = (int) points.size();
std::vector<Point> stk(n + 1);
std::sort(points.begin(), points.end(), [](const Point &A, const Point &B) {
return A.x == B.x ? A.y < B.y : A.x < B.x;
});
int top = 0;
stk[top++] = points[0];
for (int i = 1; i < n; ++i) {
while (2 <= top && side_of_line(points[i], {stk[top - 2], stk[top - 1]}) != Side::left) {
--top;
}
stk[top++] = points[i];
}
int tmp = top;
for (int i = n - 2; i >= 0; --i) {
while (tmp < top && side_of_line(points[i], {stk[top - 2], stk[top - 1]}) != Side::left) {
--top;
}
stk[top++] = points[i];
}
stk.erase(stk.begin() + top - 1, stk.end());
stk.shrink_to_fit();
return stk;
}
auto point_in_convex_polygon(const Point &P, const Polygon &p) {
using enum PointShapeRelation;
auto n = p.size();
if (n < 3) {
throw std::runtime_error("point_in_convex_polygon: polygon must have at least 3 points");
}
if (P.x < p[0].x || (P.x == p[0].x && P.y < p[0].y)) {
return outside;
}
if (side_of_line(P, {p[0], p[1]}) == Side::on) {
return sign(dot(p[1] - P, p[0] - P)) <= 0 ? on : outside;
}
if (side_of_line(P, {p[0], p[n - 1]}) == Side::on) {
return sign(dot(p[n - 1] - P, p[0] - P)) <= 0 ? on : outside;
}
auto i = std::upper_bound(
p.begin() + 1,
p.end(),
P,
[&](const Point &A, const Point &B) {
return side_of_line(p[0], {A, B}) == Side::left;
}
)
- p.begin();
return PointShapeRelation(side_of_line(P, {p[i - 1], p[i]}));
}
auto minkowski_sum(const Polygon &a, const Polygon &b) {
auto push_point = [](Polygon &v, const Point &P) {
while (2 <= v.size() && side_of_line(P, {v[v.size() - 2], v.back()}) != Side::left) {
v.pop_back();
}
v.emplace_back(P);
};
auto n = a.size(), m = b.size();
size_t i = 0, j = 0;
Polygon c;
c.reserve(n + m);
push_point(c, a.front() + b.front());
while (i < n && j < m) {
auto u = a[(i + 1) % n] - a[i];
auto v = b[(j + 1) % m] - b[j];
if (0 < det(u, v)) {
push_point(c, c.back() + u);
++i;
} else {
push_point(c, c.back() + v);
++j;
}
}
for (; i < n; ++i) {
push_point(c, c.back() + a[(i + 1) % n] - a[i]);
}
for (; j < m; ++j) {
push_point(c, c.back() + b[(j + 1) % m] - b[j]);
}
push_point(c, c.front());
c.pop_back();
return c;
}
auto point_in_polygon(const Point &P, const Polygon &p) {
using enum PointShapeRelation;
bool result = false;
for (size_t i = 0, n = p.size(); i < n; ++i) {
auto A = p[i];
auto B = p[(i + 1) % n];
if (point_on_segment(P, {A, B})) {
return on;
}
if (A.y > B.y) {
std::swap(A, B);
}
if (sign(A.y - P.y) <= 0 && sign(P.y - B.y) < 0 && side_of_line(P, {A, B}) == Side::left) {
result ^= 1;
}
}
return result ? inside : outside;
}
auto polygon_area(const Polygon &p) {
double result = 0;
for (size_t i = 0, n = p.size(); i < n; ++i) {
result += triangle_area({p[0], p[i], p[(i + 1) % n]});
}
return result;
}
auto half_planes_intersection(std::vector<Line> lines) {
using enum Side;
if (lines.empty()) {
throw std::runtime_error("half_planes_intersection: lines must not be empty");
}
std::deque<Line> q;
std::deque<Point> t;
std::sort(lines.begin(), lines.end(), [](const auto &l1, const auto &l2) {
int d = sign((l1.second - l1.first).angle() - (l2.second - l2.first).angle());
return d == 0 ? side_of_line(l1.first, l2) == left : d < 0;
});
q.emplace_back(lines[0]);
for (const auto &line: lines) {
if (parallel(q.back(), line)) {
continue;
}
while (!t.empty() && side_of_line(t.back(), line) != left) {
t.pop_back();
q.pop_back();
}
while (!t.empty() && side_of_line(t.front(), line) != left) {
t.pop_front();
q.pop_front();
}
q.emplace_back(line);
t.emplace_back(line_intersection(q.back(), line).second.value());
}
while (!t.empty() && side_of_line(t.back(), q.front()) != left) {
t.pop_back();
q.pop_back();
}
if (q.size() > 1) {
t.emplace_front(line_intersection(q.front(), q.back()).second.value());
}
return std::pair{std::vector{q.begin(), q.end()}, Polygon{t.begin(), t.end()}};
}
auto polygons_union_area(const std::span<Polygon> &polygons) {
auto n = polygons.size();
std::vector<Line> lines;
for (size_t i = 0; i < n; ++i) {
for (size_t m = polygons[i].size(), j = 0; j < m; ++j) {
lines.emplace_back(polygons[i][j], polygons[i][(j + 1) % m]);
}
}
auto m = lines.size();
std::vector<size_t> fa(m);
std::vector<std::vector<std::tuple<size_t, Point, Side, Side>>> events(m);
std::iota(fa.begin(), fa.end(), 0);
std::function<size_t(size_t)> find;
find = [&](size_t x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
};
for (size_t i = 0; i < m; ++i) {
for (size_t j = i + 1; j < m; ++j) {
if (auto u = find(i), v = find(j); u != v) {
if (auto [relation, _] = line_intersection(lines[i], lines[j]);
relation == LineLineRelation::identical) {
fa[u] = v;
}
}
}
}
for (size_t i = 0; i < m; ++i) {
for (size_t j = i + 1; j < m; ++j) {
if (auto u = find(i), v = find(j); u != v) {
if (auto [relation, I] = line_intersection(lines[u], lines[v]);
relation == LineLineRelation::intersecting) {
const auto &[A, B] = lines[i];
const auto &[C, D] = lines[j];
auto sideA = side_of_line(A, {C, D});
auto sideB = side_of_line(B, {C, D});
auto sideC = side_of_line(C, {A, B});
auto sideD = side_of_line(D, {A, B});
if (sideA != sideB) {
events[find(j)].emplace_back(i, I.value(), sideA, sideB);
}
if (sideC != sideD) {
events[find(i)].emplace_back(j, I.value(), sideC, sideD);
}
}
}
}
}
double res = 0;
for (size_t i = 0; i < m; ++i) {
if (find(i) != i) {
continue;
}
const auto &[a, b] = lines[i];
std::sort(events[i].begin(), events[i].end(), [&](const auto &a, const auto &b) {
return std::get<0>(a) < std::get<0>(b);
});
events[i].erase(
std::unique(
events[i].begin(),
events[i].end(),
[&](const auto &a, const auto &b) { return std::get<0>(a) == std::get<0>(b); }
),
events[i].end()
);
events[i].erase(
std::remove_if(
events[i].begin(),
events[i].end(),
[&](const auto &a) { return find(std::get<0>(a)) == i; }
),
events[i].end()
);
std::sort(events[i].begin(), events[i].end(), [a, b](const auto &p, const auto &q) {
return dot(std::get<1>(p) - a, b - a) < dot(std::get<1>(q) - a, b - a);
});
int cntl = 0, cntr = 0;
double last;
auto unit = (b - a).unit();
for (auto const &[id, o, sideC, sideD]: events[i]) {
auto dis = dot(o - a, unit);
if (cntl != 0 && cntr == 0) {
res += det(a + unit * last, a + unit * dis);
}
if (sideC == Side::left) {
++cntl;
}
if (sideD == Side::left) {
--cntl;
}
if (sideC == Side::right) {
--cntr;
}
if (sideD == Side::right) {
++cntr;
}
last = dis;
}
}
return res / 2;
}
namespace {
auto cmp_y(const Point &A, const Point &B) {
return A.y != B.y ? A.y < B.y : A.x < B.x;
};
auto closer(const Segment &s1, const Segment &s2) {
return len2(s1) < len2(s2);
}
auto clostest_pair_of_points_helper(std::span<Point> a) -> Segment {
auto n = a.size();
if (n <= 3) {
std::sort(a.begin(), a.end(), cmp_y);
if (n == 2) {
return std::make_pair(a[0], a[1]);
}
return std::min(
{std::make_pair(a[0], a[1]),
std::make_pair(a[0], a[2]),
std::make_pair(a[1], a[2])},
closer
);
}
auto mid = n / 2;
auto xmid = a[mid].x;
auto ls = clostest_pair_of_points_helper(a.subspan(0, mid));
auto rs = clostest_pair_of_points_helper(a.subspan(mid, n - mid));
auto res = std::min(ls, rs, closer);
std::inplace_merge(a.begin(), a.begin() + static_cast<ptrdiff_t>(mid), a.end(), cmp_y);
std::deque<Point> b;
for (const auto &P: a) {
if (xmid - P.x >= len(res)) {
continue;
}
for (const auto &Q: b) {
res = std::min(res, std::make_pair(P, Q), closer);
}
while (!b.empty() && P.y - b.front().y >= len(res)) {
b.pop_front();
}
b.push_back(P);
}
return res;
}
}// namespace
auto closest_pair_of_points(std::vector<Point> a) {
if (a.size() < 2) {
throw std::runtime_error("closest_pair_of_points: a must have at least 2 points");
}
std::sort(a.begin(), a.end(), [](const auto &P, const auto &Q) {
return P.x != Q.x ? P.x < Q.x : P.y < Q.y;
});
return clostest_pair_of_points_helper(a);
}
int main() {
int n;
scanf("%d", &n);
std::vector<Point> a(n);
for (int i = 0; i < n; ++i) {
scanf("%lf %lf", &a[i].x, &a[i].y);
}
auto [P, Q] = closest_pair_of_points(a);
printf("%.10lf\n", (P - Q).len());
return 0;
}