QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#368976#5099. 朝圣道zyc07041930 303ms16300kbC++204.0kb2024-03-27 18:44:532024-03-27 18:45:21

Judging History

This is the latest submission verdict.

  • [2024-03-27 18:45:21]
  • Judged
  • Verdict: 30
  • Time: 303ms
  • Memory: 16300kb
  • [2024-03-27 18:44:53]
  • Submitted

answer

#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
#define ll long long
#include "pilgrimage.h"
using namespace std;

int mod, inv, Phi = 1;

inline int add(int x, int y) {x += y; return x >= mod ? x - mod : x;}
inline int del(int x, int y) {x -= y; return x < 0 ? x + mod : x;}
inline void Add(int &x, int y) {x = add(x, y);}
inline void Del(int &x, int y) {x = del(x, y);}
inline int qpow(int x, ll y) {
	if (y >= Phi) y %= Phi, y += Phi;
	int res = 1;
	while (y) {
		if (y & 1ll) res = 1ll * res * x % mod;
		x = 1ll * x * x % mod;
		y >>= 1;
	}
	return res;
}

namespace my_ex_Lucas {
	struct node {
		int p, c, pw, m, phi;
		vector<int> pre, qpw, iv;
	};
	ll lstn;
	int p, cnt, lstid, lstans;
	node a[20];
	
	void ex_gcd(int A, int B, int &x, int &y) {
		if (!B) return x = 1, y = 0, void();
		int xx, yy;
		ex_gcd(B, A % B, xx, yy);
		x = yy; y = xx - A / B * yy;
	}
	inline int get_inv(int v, int mod) {
		int x, y;
		ex_gcd(v, mod, x, y);
		x = (x % mod + mod) % mod;
		assert(1ll * v * x % mod == 1);
		return x;
	}
	
	void init(int P) {
		int x = p = P; cnt = 0;
		for (int i = 2; i * i <= x; ++i) {
			if (x % i) continue;
			int num = 0, now = 1;
			while (x % i == 0) num++, now *= i, x /= i;
			cnt++;
			a[cnt].p = i; a[cnt].c = num; a[cnt].pw = now; a[cnt].m = p / now;
			a[cnt].m = 1ll * a[cnt].m * get_inv(a[cnt].m % now, now) % p;
			a[cnt].phi = now - now / i;
			a[cnt].pre.resize(now);
			a[cnt].pre[0] = 1;
			for (int j = 1; j < now; ++j) a[cnt].pre[j] = 1ll * a[cnt].pre[j - 1] * (j % i == 0 ? 1 : j) % now;
			a[cnt].qpw.resize(a[cnt].phi * 2);
			a[cnt].qpw[0] = 1;
			for (int j = 1; j < a[cnt].phi * 2; ++j) a[cnt].qpw[j] = 1ll * a[cnt].qpw[j - 1] * a[cnt].pre[now - 1] % now;
			a[cnt].iv.resize(now);
			for (int j = 1; j < now; ++j)
				if (j % i) a[cnt].iv[j] = get_inv(j, now);
			Phi *= a[cnt].phi;
		}
		if (x > 1) {
			Phi *= (x - 1);
			cnt++;
			a[cnt].p = x; a[cnt].c = 1; a[cnt].pw = x; a[cnt].m = p / x;
			a[cnt].m = 1ll * a[cnt].m * get_inv(a[cnt].m % x, x) % p;
			a[cnt].phi = x - 1;
			a[cnt].pre.resize(x);
			a[cnt].pre[0] = 1;
			for (int j = 1; j < x; ++j) a[cnt].pre[j] = 1ll * a[cnt].pre[j - 1] * j % x;
			a[cnt].qpw.resize(a[cnt].phi * 2);
			a[cnt].qpw[0] = 1;
			for (int j = 1; j < a[cnt].phi * 2; ++j) a[cnt].qpw[j] = 1ll * a[cnt].qpw[j - 1] * a[cnt].pre[x - 1] % x;
			a[cnt].iv.resize(x);
			for (int j = 1; j < x; ++j) a[cnt].iv[j] = get_inv(j, x);
		}
	}
	
	int calc(ll n, int id) {
		if (n == lstn) return lstans;
		lstn = n;
		ll mem = n / a[id].pw;
		if (mem >= a[id].phi) mem = mem % a[id].phi + a[id].phi;
		return lstans = 1ll * a[id].qpw[mem] * a[id].pre[n % a[id].pw] % a[id].pw;
	}
	
	int work(ll n, ll m, int id) {
		int o = 0, res = 1, ire = 1;
		res = calc(n, id);
		ire = 1ll * calc(m, id) * calc(n - m, id) % a[id].pw;
		for (ll now = a[id].p; now <= n;) o += n / now - m / now - (n - m) / now;
		if (o >= a[id].c) return 0;
		for (ll now = a[id].p; now <= n;) {
			res = 1ll * res * calc(n / now, id) % a[id].pw;
			ire = 1ll * ire * calc(m / now, id) % a[id].pw * calc((n - m) / now, id) % a[id].pw;
			if (n / a[id].p < now) break;
			now *= a[id].p;
		}
		res = 1ll * res * a[id].iv[ire] % a[id].pw;
		if (o >= a[id].c) return 0;
		while (o--) res = 1ll * res * a[id].p % a[id].pw;
		return res;
	}
	
	int ex_Lucas(ll n, ll m) {
		if (n < 0 || m < 0 || n < m) return 0;
		int res = 0;
		for (int i = 1; i <= cnt; ++i) {
			lstn = -1;
			int tmp = work(n, m, i);
			res = (res + 1ll * tmp * a[i].m) % p;
		}
		return res;
	}
}

using my_ex_Lucas :: ex_Lucas;

void init(int o, int p) {
	mod = p;
	inv = (mod + 1) / 2;
	my_ex_Lucas :: init(p);
}

int ask(ll n) {
	if (n == 1) return inv;
	n--;
	int val = (2ll * n - 1) % mod;
	val = 8ll * val * (val + 2) % mod;
	int tmp1 = ex_Lucas(2ll * n - 2, n - 1);
	int tmp2 = ex_Lucas(2ll * n - 2, n - 2);
	val = 1ll * val * del(tmp1, tmp2) % mod;
	val = 1ll * val * qpow(inv, 2ll * n + 3) % mod;
	return val;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Time Limit Exceeded

Test #1:

score: 4
Accepted
time: 126ms
memory: 15748kb

input:

1 910276 554767
6
10
7
4
10
12
9
3
3
5
7
10
5
6
1
6
3
9
6
8
12
11
8
2
12
5
9
3
8
2
12
11
2
3
4
9
2
5
5
11
6
4
8
11
3
9
2
2
8
9
2
8
9
6
2
9
2
10
10
7
5
6
4
4
11
12
8
8
2
2
4
3
3
5
6
6
8
11
6
9
9
3
4
1
2
2
6
9
9
2
3
2
12
6
1
7
2
4
12
11
4
7
6
3
9
4
6
5
3
3
12
6
2
1
1
7
2
6
5
9
11
6
3
4
11
1
2
4
5
4
10...

output:

5419
364275
514407
329394
364275
229662
53120
520095
520095
509260
514407
364275
509260
5419
277384
5419
520095
53120
5419
115262
229662
243797
115262
416076
229662
509260
53120
520095
115262
416076
229662
243797
416076
520095
329394
53120
416076
509260
509260
243797
5419
329394
115262
243797
520095...

result:

ok 910276 numbers

Test #2:

score: -4
Time Limit Exceeded

input:

1 972231 293475
7
1
9
6
5
1
11
5
5
12
2
2
7
3
4
10
10
3
2
10
7
1
10
9
1
3
5
6
7
2
7
4
1
10
1
9
3
10
10
2
6
11
4
10
12
8
5
2
12
4
9
12
7
2
12
4
3
1
2
9
12
1
4
5
6
12
6
5
9
2
5
12
3
4
6
12
12
2
1
6
4
12
10
5
12
7
9
8
3
8
10
5
3
6
12
7
7
10
7
10
8
7
7
2
2
4
8
6
10
8
11
6
11
10
3
9
5
2
5
1
10
2
11
4
4
3...

output:

Unauthorized output

result:


Subtask #2:

score: 0
Skipped

Dependency #1:

0%

Subtask #3:

score: 12
Accepted

Test #5:

score: 12
Accepted
time: 32ms
memory: 8344kb

input:

3 1 334547
8234

output:

179079

result:

ok 1 number(s): "179079"

Subtask #4:

score: 18
Accepted

Dependency #3:

100%
Accepted

Test #6:

score: 18
Accepted
time: 303ms
memory: 16300kb

input:

4 1000000 581873
49881
62491
206405
26106
129239
174098
141494
61402
149825
241992
8109
243567
71918
203927
278575
263516
143582
32237
195508
269119
9111
105700
80919
229859
150334
171917
78447
62500
190063
138903
6395
222902
118653
136505
242467
64984
170330
287622
27089
35823
107672
273459
188857
...

output:

225562
278095
494263
533616
449513
172629
433105
169217
156602
470240
127840
224903
148625
143635
385698
428034
270424
224704
326598
317786
205590
556103
563899
492571
87003
417735
350849
476300
65308
462020
373541
56205
35476
425631
345156
395965
377993
402141
119653
299737
4555
400632
420936
58015...

result:

ok 1000000 numbers

Subtask #5:

score: 0
Time Limit Exceeded

Dependency #4:

100%
Accepted

Test #7:

score: 0
Time Limit Exceeded

input:

5 1000000 840643
596357868225427095
792903040511847841
549819683428503148
982786835970534376
855138540813992974
101968907510306081
885121351101383723
127972727417081251
728407510651610501
998897446686193527
889398142082696651
17276066104970301
87773104284997915
716559595019194816
538865162230963483
...

output:

Unauthorized output

result:


Subtask #6:

score: 0
Time Limit Exceeded

Test #8:

score: 0
Time Limit Exceeded

input:

6 958477 522361
280121915553826833
734266539148641647
72849162479700582
274266741463686096
60278972064195458
828423669427600612
571432949203039978
518511460268700898
486268614705621285
19216283231217074
611458416727512530
175147354285288662
799769622289998997
400123443628688299
145546980862133838
40...

output:

Unauthorized output

result:


Subtask #7:

score: 0
Time Limit Exceeded

Dependency #3:

100%
Accepted

Test #13:

score: 0
Time Limit Exceeded

input:

7 1 731039
314313205082038759

output:

Unauthorized output

result:


Subtask #8:

score: 0
Time Limit Exceeded

Test #33:

score: 0
Time Limit Exceeded

input:

8 9963 251
831797004675585320
494759973681332858
701341496127272302
252910460485222469
250965009655458584
366193481309061299
633134388675839346
791999098066205672
196620805863610860
363773642045280947
466508590762410710
407790578717064135
181590911404670570
570642047249889864
70138464625729452
23634...

output:

Unauthorized output

result:


Subtask #9:

score: 0
Skipped

Dependency #1:

0%