QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#368323 | #8055. Balance | ucup-team2219 | WA | 76ms | 5948kb | C++23 | 7.5kb | 2024-03-27 00:21:17 | 2024-03-27 00:21:18 |
Judging History
answer
/*
* Author : YangDavid
* Created Time : 2019年09月13日 星期五 11时55分25秒
* Submit Link : BZOJ 1718 (https://darkbzoj.tk/problem/1718)
题意:给一个无向联通图,问至少加入几条边能使其变为边双联通图。
题解:将原图用 Tarjan edge-BCC 缩点得到一棵树,则答案为 (leaf + 1) / 2
*/
#include <bits/stdc++.h>
#ifdef LOCAL
#include "cp_debug.h"
// #define debug(...) 42
#else
#define debug(...) 42
#endif
#define rep(i,a,b) for(int i = a; i < b; ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)x.size()
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<int> vi;
typedef vector<ll> vl;
template<typename T> void read(T &x){
x = 0;char ch = getchar();ll f = 1;
while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
template<typename T, typename... Args> void read(T &first, Args& ... args) {
read(first);
read(args...);
}
template<typename T> void write(T x) {
if(x > 9) write(x/10);
putchar(x%10 + '0');
}
const int N = 100300, M = 200300;
// tarjan edge biconnected component
// INPUT -- user takes care of clearing these, then tarjan() takes care of the rest.
int n, m;
vector<pii> G[N];
// INTERMEDIARY
int pre[N], low[N], dfsClock;
// OUTPUT
int isBridge[M];
int eccno[N], eccCnt;
vector<int> nG[N];
void dfs1(int u, int fa) {
low[u] = pre[u] = ++dfsClock;
for(auto [v, e]: G[u]) {
if(!pre[v]) {
dfs1(v, u);
low[u] = min(low[u], low[v]);
if(low[v] > pre[u])
isBridge[e] = true;
} else if(v != fa && pre[v] < pre[u])
low[u] = min(low[u], pre[v]);
}
}
void dfs2(int u, int fa) {
eccno[u] = eccCnt;
for(auto i: G[u])
if(!isBridge[i.second] && i.first != fa && !eccno[i.first])
dfs2(i.first, u);
}
void tarjan() { // 确保上面的变量均已经定义
dfsClock = eccCnt = 0;
memset(pre, 0, sizeof(int)*(n+1));
memset(low, 0, sizeof(int)*(n+1));
memset(isBridge, 0, sizeof(int)*(m+1));
memset(eccno, 0, sizeof(int)*(n+1));
dfs1(1, -1);
for(int i = 1; i <= n; ++i) if(!eccno[i]) {
eccCnt++;
nG[eccCnt].clear();
dfs2(i, -1);
}
for(int i = 1; i <= n; ++i) for(auto j: G[i]) {
if(eccno[i] != eccno[j.first]) {
nG[eccno[i]].push_back(eccno[j.first]);
}
}
}
struct State {
pii rk1{}, rk2{};
void update(pii x) {
if(x == rk1 || x == rk2) return;
if(x <= rk2) return;
if(x <= rk1) { rk2 = x; return; }
rk2 = rk1;
rk1 = x;
}
tuple<int,int,int> combine(const State &rhs) const {
if(rk1.first == 0 || rhs.rk1.first == 0 || rk1.second != rhs.rk1.second) {
return {rk1.first + rhs.rk1.first, 1, 1};
}
tuple<int,int,int> ret = max(make_tuple(rk1.first, 1, 0), make_tuple(rhs.rk1.first, 0, 1));
if(rhs.rk2.first == 0 || rhs.rk2.second != rk1.second) {
ret = max(ret, make_tuple(rk1.first + rhs.rk2.first, 1, 0));
}
if(rk2.first == 0 || rk2.second != rhs.rk1.second) {
ret = max(ret, make_tuple(rk2.first + rhs.rk1.first, 0, 1));
}
return ret;
}
};
void solve() {
read(n, m);
rep(i, 1, m+1) {
int u, v; // 注意存图方式
read(u, v);
G[u].emplace_back(v, i);
G[v].emplace_back(u, i);
}
vi a(n+1);
rep(i, 1, n+1) read(a[i]);
tarjan();
debug(vi(eccno+1, eccno+n+1));
debug(vector<vi> (nG+1, nG+eccCnt+1));
sort(a.begin()+1, a.end());
vi siz(eccCnt+1, 0), valid_up(eccCnt+1, 0), valid_down(eccCnt+1, 0), eccSz(eccCnt+1, 0);
rep(i,1,n+1) eccSz[eccno[i]]++;
function<void(int,int)> dfs = [&](int u, int fath) {
siz[u] = eccSz[u];
for(auto v: nG[u]) if(v != fath) {
dfs(v, u);
siz[u] += siz[v];
valid_up[v] = (a[siz[v]] != a[siz[v]+1]);
valid_down[v] = (a[n-siz[v]] != a[n-siz[v]+1]);
}
};
dfs(1, -1);
debug(valid_up);
debug(valid_down);
vector<State> max_up(eccCnt+1), max_down(eccCnt+1);
tuple<int,int,int> best = {-1,-1,-1};
int best_vertex = -1;
function<void(int,int)> dp = [&](int u, int fath) {
for(auto v: nG[u]) if(v != fath) {
dp(v, u);
max_up[u].update({max_up[v].rk1.first + valid_up[v], v});
max_down[u].update({max_down[v].rk1.first + valid_down[v], v});
}
auto cc = max_up[u].combine(max_down[u]);
if(cc > best) {
best = cc;
best_vertex = u;
}
};
dp(1, -1);
rep(i,1,eccCnt+1) {
debug(i,max_up[i].rk1, max_up[i].rk2);
debug(i,max_down[i].rk1, max_down[i].rk2);
}
int num_changes = -1;
vi a_distinct;
rep(i, 1, n+1) {
if(i == 1 || a[i-1] != a[i]) {
a_distinct.emplace_back(a[i]);
num_changes++;
}
}
debug(num_changes, best);
assert(num_changes >= get<0>(best));
if(num_changes > get<0>(best)) {
cout<<"No"<<'\n';
} else {
cout<<"Yes"<<'\n';
vector<int> marked(eccCnt+1, -1), value(eccCnt+1, -1);
auto [best_length, use_up_rk1, use_down_rk1] = best;
auto [length_up, v_up] = use_up_rk1 ? max_up[best_vertex].rk1 : max_up[best_vertex].rk2;
auto [length_down, v_down] = use_down_rk1 ? max_down[best_vertex].rk1 : max_down[best_vertex].rk2;
assert(length_up + length_down == best_length);
if(length_up > 0 && length_down > 0) {
assert(v_up != v_down);
}
debug(length_up, v_up, length_down, v_down, best_vertex);
marked[best_vertex] = a_distinct[length_up];
if(length_up > 0) {
int p1 = v_up, cp = length_up;
if(max_up[p1].rk1.first < length_up) {
marked[p1] = a_distinct[--cp];
}
while(max_up[p1].rk1.first > 0) {
int np1 = max_up[p1].rk1.second;
if(max_up[np1].rk1.first < max_up[p1].rk1.first) {
marked[np1] = a_distinct[--cp];
}
p1 = np1;
}
}
if(length_down > 0) {
int p2 = v_down, cp = length_up;
if(max_down[p2].rk1.first < length_down) {
marked[p2] = a_distinct[++cp];
}
while(max_up[p2].rk1.first) {
int np2 = max_down[p2].rk1.second;
if(max_down[np2].rk1.first < max_down[p2].rk1.first) {
marked[np2] = a_distinct[++cp];
}
p2 = np2;
}
}
debug(marked);
function<void(int,int,int)> dfs_mark = [&](int u, int fa, int cmark) {
if(marked[u] != -1) cmark = marked[u];
value[u] = cmark;
for(auto v: nG[u]) if(v != fa) {
dfs_mark(v, u, cmark);
}
};
dfs_mark(1, -1, marked[best_vertex]);
debug(value);
rep(i,1,n+1) {
cout<<value[eccno[i]]<<" \n"[i==n];
}
}
rep(i, 1, n+1) G[i].clear();
rep(i, 1, eccCnt+1) nG[i].clear();
}
int main() {
int T; read(T);
while(T--) solve();
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 5652kb
input:
5 5 4 1 2 2 3 3 4 4 5 1 2 3 4 5 5 4 1 2 1 3 1 4 1 5 1 2 3 4 5 5 4 1 2 1 3 1 4 1 5 1 2 2 2 3 5 6 1 2 1 2 2 3 3 4 4 5 3 5 1 2 1 2 1 2 2 1 2 1 2 1 2
output:
Yes 5 4 3 2 1 No Yes 2 2 2 3 1 Yes 2 2 1 1 1 No
result:
ok ok (5 test cases)
Test #2:
score: -100
Wrong Answer
time: 76ms
memory: 5948kb
input:
100000 4 3 4 2 1 3 2 1 2 1 3 2 5 7 2 5 5 3 2 3 5 1 4 3 2 4 4 3 1 3 1 1 2 3 2 2 1 2 3 1 1 1 4 7 3 4 1 4 2 3 4 3 4 2 3 1 4 3 2 3 3 2 4 6 2 4 3 1 1 2 1 2 2 3 4 2 1 1 3 3 4 7 3 2 4 2 1 2 3 4 3 2 2 4 3 4 2 1 1 1 5 5 3 2 1 5 4 5 4 3 2 1 1 2 2 3 2 3 5 2 3 1 3 3 1 3 1 2 1 3 2 3 2 3 2 1 2 1 1 2 1 1 2 3 2 1 1...
output:
Yes 2 2 1 3 No Yes 1 1 1 No No Yes 2 1 1 1 No No Yes 1 1 Yes 1 1 Yes 1 1 Yes 1 1 1 1 No Yes 1 1 1 1 1 Yes 1 3 1 1 1 Yes 1 1 1 Yes 2 1 Yes 1 1 1 1 1 Yes 2 1 No Yes 1 1 Yes 1 1 1 Yes 1 1 Yes 1 1 1 1 Yes 1 1 Yes 2 2 2 2 2 Yes 1 1 1 1 1 Yes 1 1 Yes 1 1 1 2 No Yes 1 1 No Yes 1 1 No No No Yes 1 1 1 1 2 Ye...
result:
wrong answer 5-th smallest numbers are not same (test case 357)