QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#362453 | #8505. Almost Aligned | ucup-team987# | WA | 621ms | 102756kb | C++20 | 20.3kb | 2024-03-23 15:35:18 | 2024-03-23 15:35:20 |
Judging History
answer
/**
* date : 2024-03-23 16:35:11
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
using Real = long double;
constexpr Real EPS = 1e-10;
constexpr Real pi = 3.141592653589793238462643383279L;
bool equals(Real a, Real b) { return fabs(b - a) < EPS; }
int sign(Real a) { return equals(a, 0) ? 0 : a > 0 ? 1 : -1; }
template <typename R>
struct PointBase {
using P = PointBase;
R x, y;
PointBase() : x(0), y(0) {}
PointBase(R _x, R _y) : x(_x), y(_y) {}
template <typename T, typename U>
PointBase(const pair<T, U>& p) : x(p.first), y(p.second) {}
P operator+(const P& r) const { return {x + r.x, y + r.y}; }
P operator-(const P& r) const { return {x - r.x, y - r.y}; }
P operator*(R r) const { return {x * r, y * r}; }
P operator/(R r) const { return {x / r, y / r}; }
P& operator+=(const P& r) { return (*this) = (*this) + r; }
P& operator-=(const P& r) { return (*this) = (*this) - r; }
P& operator*=(R r) { return (*this) = (*this) * r; }
P& operator/=(R r) { return (*this) = (*this) / r; }
bool operator<(const P& r) const { return x != r.x ? x < r.x : y < r.y; }
bool operator==(const P& r) const { return x == r.x and y == r.y; }
bool operator!=(const P& r) const { return !((*this) == r); }
P rotate(R rad) const {
return {x * cos(rad) - y * sin(rad), x * sin(rad) + y * cos(rad)};
}
R real() const { return x; }
R imag() const { return y; }
friend R real(const P& p) { return p.x; }
friend R imag(const P& p) { return p.y; }
friend R dot(const P& l, const P& r) { return l.x * r.x + l.y * r.y; }
friend R cross(const P& l, const P& r) { return l.x * r.y - l.y * r.x; }
friend R abs(const P& p) { return sqrt(p.x * p.x + p.y * p.y); }
friend R norm(const P& p) { return p.x * p.x + p.y * p.y; }
friend R arg(const P& p) { return atan2(p.y, p.x); }
friend istream& operator>>(istream& is, P& p) {
R a, b;
is >> a >> b;
p = P{a, b};
return is;
}
friend ostream& operator<<(ostream& os, const P& p) {
return os << p.x << " " << p.y;
}
};
using Point = PointBase<Real>;
using Points = vector<Point>;
// ccw, 点の進行方向
int ccw(const Point& a, const Point& b, const Point& c) {
Point x = b - a, y = c - a;
if (cross(x, y) > EPS) return +1; // 反時計回り
if (cross(x, y) < -EPS) return -1; // 時計回り
if (min(norm(x), norm(y)) < EPS * EPS) return 0; // c=a または c=b
if (dot(x, y) < EPS) return +2; // c-a-b の順で一直線
if (norm(x) < norm(y)) return -2; // a-b-c の順で一直線
return 0; // a-c-b の順で一直線
}
using Polygon = vector<Point>;
// 多角形の内部に点があるか?
// OUT : 0, ON : 1, IN : 2
int contains_polygon(const Polygon &Q, const Point &p) {
bool in = false;
for (int i = 0; i < (int)Q.size(); i++) {
Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;
if (imag(a) > imag(b)) swap(a, b);
if (sign(imag(a)) <= 0 && 0 < sign(imag(b)) && sign(cross(a, b)) < 0)
in = !in;
if (equals(cross(a, b), 0) && sign(dot(a, b)) <= 0) return 1;
}
return in ? 2 : 0;
}
// 多角形の面積
Real area(const Polygon &p) {
Real A = 0;
for (int i = 0; i < (int)p.size(); ++i) {
A += cross(p[i], p[(i + 1) % p.size()]);
}
return A * 0.5;
}
// 頂点集合から凸包を生成
// boundary : 周上の点も列挙する場合 true
template <bool boundary = false>
Polygon convex_hull(vector<Point> ps) {
int n = (int)ps.size(), k = 0;
if (n <= 2) return ps;
sort(ps.begin(), ps.end());
vector<Point> ch(2 * n);
// 反時計周り
Real th = boundary ? -EPS : +EPS;
for (int i = 0; i < n; ch[k++] = ps[i++]) {
while (k >= 2 && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < th) --k;
}
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {
while (k >= t && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < th) --k;
}
ch.resize(k - 1);
return ch;
}
// 凸包の内部に点があるか?
// OUT : 0, ON : 1, IN : 2
int contains_convex(const Polygon &C, const Point &p) {
int N = C.size();
auto b1 = cross(C[1] - C[0], p - C[0]);
auto b2 = cross(C[N - 1] - C[0], p - C[0]);
if (b1 < -EPS or b2 > EPS) return 0;
int L = 1, R = N - 1;
while (L + 1 < R) {
int M = (L + R) / 2;
(cross(p - C[0], C[M] - C[0]) >= 0 ? R : L) = M;
}
auto v = cross(C[L] - p, C[R] - p);
if (equals(v, 0)) {
return 1;
} else if (v > 0) {
return equals(b1, 0) or equals(b2, 0) ? 1 : 2;
} else {
return 0;
}
}
// 凸包が与えられるので最遠点対を返す
// 返り値:頂点番号のペア
pair<int, int> convex_polygon_diameter(const Polygon &p) {
int N = (int)p.size();
int is = 0, js = 0;
for (int i = 1; i < N; i++) {
if (imag(p[i]) > imag(p[is])) is = i;
if (imag(p[i]) < imag(p[js])) js = i;
}
Real maxdis = norm(p[is] - p[js]);
int maxi, maxj, i, j;
i = maxi = is;
j = maxj = js;
do {
if (cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) {
j = (j + 1) % N;
} else {
i = (i + 1) % N;
}
if (norm(p[i] - p[j]) > maxdis) {
maxdis = norm(p[i] - p[j]);
maxi = i;
maxj = j;
}
} while (i != is || j != js);
return minmax(maxi, maxj);
}
struct Line {
Point a, b;
Line() = default;
Line(const Point &_a, const Point &_b) : a(_a), b(_b) {}
// Ax+By=C
Line(const Real &A, const Real &B, const Real &C) {
if (equals(A, 0)) {
assert(!equals(B, 0));
a = Point(0, C / B);
b = Point(1, C / B);
} else if (equals(B, 0)) {
a = Point(C / A, 0);
b = Point(C / A, 1);
} else if (equals(C, 0)) {
a = Point(0, C / B);
b = Point(1, (C - A) / B);
} else {
a = Point(0, C / B);
b = Point(C / A, 0);
}
}
friend ostream &operator<<(ostream &os, const Line &l) {
return os << l.a << " to " << l.b;
}
friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; }
};
using Lines = vector<Line>;
bool is_parallel(const Line &a, const Line &b) {
return equals(cross(a.b - a.a, b.b - b.a), 0);
}
bool is_orthogonal(const Line &a, const Line &b) {
return equals(dot(a.a - a.b, b.a - b.b), 0);
}
Point cross_point_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return m.a;
return m.a + (m.b - m.a) * B / A;
}
bool is_intersect_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return true;
return !is_parallel(l, m);
}
// 直線に頂点から垂線を下ろした時の交点
Point projection(const Line &l, const Point &p) {
Real t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
// 凸包を直線で切った時の片方 (直線 a->b の進行方向左側) を返す
Polygon convex_polygon_cut(const Polygon &U, const Line &l) {
Polygon ret;
for (int i = 0; i < (int)U.size(); i++) {
const Point &now = U[i];
const Point &nxt = U[(i + 1) % U.size()];
auto cf = cross(l.a - now, l.b - now);
auto cs = cross(l.a - nxt, l.b - nxt);
if (sign(cf) >= 0) {
ret.emplace_back(now);
}
if (sign(cf) * sign(cs) < 0) {
ret.emplace_back(cross_point_ll(Line(now, nxt), l));
}
}
return ret;
}
using namespace Nyaan;
using pd = pair<double, double>;
// 最小値
double cross_x(pd a, pd b) {
assert(a.fi != b.fi);
return (b.se - a.se) / (a.fi - b.fi);
}
V<pd> calc(V<pd> v) {
sort(all(v), [&](auto a, auto b) { return a.fi < b.fi; });
// 前処理
{
V<pd> w;
each2(x, y, v) {
if (sz(w) and w.back().fi == x) {
amin(w.back().se, y);
} else {
w.emplace_back(x, y);
}
}
v = w;
}
V<pd> Q;
for (auto& p : v) {
// p を追加する
while ((int)Q.size() >= 2) {
// r - q - p
pd& q = Q.back();
pd& r = Q[sz(Q) - 2];
double x1 = cross_x(q, r); // q が r を追い越すタイミング
double x2 = cross_x(p, q); // p が q を追い越すタイミング
if (x1 < x2) break;
Q.pop_back();
}
Q.push_back(p);
}
return Q;
}
void q() {
inl(N);
vl X(N), Y(N), Vx(N), Vy(N);
in4(X, Y, Vx, Vy);
V<pd> xmin, xmax, ymin, ymax;
{
V<pd> v;
rep(i, N) v.emplace_back(Vx[i], X[i]);
xmax = calc(v);
each2(key, val, v) key = -key, val = -val;
xmin = calc(v);
each2(key, val, xmin) key = -key, val = -val;
}
{
V<pd> v;
rep(i, N) v.emplace_back(Vy[i], Y[i]);
ymax = calc(v);
each2(key, val, v) key = -key, val = -val;
ymin = calc(v);
each2(key, val, ymin) key = -key, val = -val;
}
double ans = 1e100;
int i = 0, j = 0, k = 0, l = 0;
double last = -1e100;
while (true) {
double nxt = 1e100;
int idx = -1;
auto upd = [&](V<pd>& v, int s, int id) {
if (s + 1 != sz(v)) {
double x = cross_x(v[s], v[s + 1]);
if (amin(nxt, x)) idx = id;
}
};
upd(xmin, i, 0);
upd(xmax, j, 1);
upd(ymin, k, 2);
upd(ymax, l, 3);
// [last, nxt] 間で評価する
if (0 <= nxt) {
double lo = max(0.0, last);
double hi = nxt;
// (At + B)(Ct + D)
double A = xmax[j].fi - xmin[i].fi;
double B = xmax[j].se - xmin[i].se;
double C = ymax[l].fi - ymin[k].fi;
double D = ymax[l].se - ymin[k].se;
// E t^2 + F t + G
double E = A * C;
double F = A * D + B * C;
double G = B * D;
trc(lo, hi, E, F, G);
amin(ans, E * lo * lo + F * lo + G);
amin(ans, E * hi * hi + F * hi + G);
// アレ
double H = -F / (2 * E);
if (lo <= H and H <= hi) {
amin(ans, E * H * H + F * H + G);
}
}
if (idx == 0) i++;
if (idx == 1) j++;
if (idx == 2) k++;
if (idx == 3) l++;
if (idx == -1) break;
last = nxt;
}
out(ans);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3788kb
input:
4 0 0 10 10 0 0 10 10 10 10 -10 -10 10 0 -20 0
output:
22.222222222222221
result:
ok found '22.222222222', expected '22.222222222', error '0.000000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3856kb
input:
3 0 -1 0 2 1 1 1 1 -1 1 -1 1
output:
0.000000000000000
result:
ok found '0.000000000', expected '0.000000000', error '-0.000000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3956kb
input:
3 0 -1 0 -2 1 1 1 1 -1 1 -1 1
output:
4.000000000000000
result:
ok found '4.000000000', expected '4.000000000', error '0.000000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3952kb
input:
1 0 0 0 0
output:
0.000000000000000
result:
ok found '0.000000000', expected '0.000000000', error '-0.000000000'
Test #5:
score: 0
Accepted
time: 0ms
memory: 4092kb
input:
4 1000000 1000000 -1 -1000000 1000000 -1000000 -1000000 1 -1000000 -1000000 1 1000000 -1000000 1000000 1000000 -1
output:
3999984000032.000000000000000
result:
ok found '3999984000032.000000000', expected '3999984000032.000000000', error '0.000000000'
Test #6:
score: -100
Wrong Answer
time: 621ms
memory: 102756kb
input:
1000000 -871226 486657 -467526 31395 -65837 846554 469710 -907814 927993 -45099 713462 -276539 261942 483255 746021 811070 63449 -779486 588838 -413687 812070 -87868 -813499 -420768 112521 -622607 -832012 921368 -182120 517379 -401743 -837524 -685985 337832 643014 135144 12895 326935 -495720 930620 ...
output:
3999984000012.000000000000000
result:
wrong answer 1st numbers differ - expected: '3999996000000.0000000', found: '3999984000012.0000000', error = '0.0000030'