QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#357197 | #7404. Back and Forth | ckiseki | WA | 0ms | 3832kb | C++23 | 4.9kb | 2024-03-18 19:16:45 | 2024-03-18 19:16:45 |
Judging History
answer
// An AC a day keeps the doctor away.
#include <bits/stdc++.h>
using namespace std;
/*{{{*/
#define all(x) begin(x), end(x)
#ifdef CKISEKI
#include <experimental/iterator>
#define safe cerr<<__PRETTY_FUNCTION__<<" line "<<__LINE__<<" safe\n"
#define debug(a...) debug_(#a, a)
#define orange(a...) orange_(#a, a)
void debug_(auto s, auto ...a) {
cerr << "\e[1;32m(" << s << ") = (";
int f = 0;
(..., (cerr << (f++ ? ", " : "") << a));
cerr << ")\e[0m\n";
}
void orange_(auto s, auto L, auto R) {
cerr << "\e[1;33m[ " << s << " ] = [ ";
using namespace experimental;
copy(L, R, make_ostream_joiner(cerr, ", "));
cerr << " ]\e[0m\n";
}
#else
#define safe ((void)0)
#define debug(...) safe
#define orange(...) safe
#endif
template <typename T, T MOD> class Modular {
public:
constexpr Modular() : v() {}
template <typename U> Modular(const U &u) { v = (0 <= u && u < MOD ? u : (u%MOD+MOD)%MOD); }
template <typename U> explicit operator U() const { return U(v); }
T operator()() const { return v; }
#define REFOP(type, expr...) Modular &operator type (const Modular &rhs) { return expr, *this; }
REFOP(+=, v += rhs.v - MOD, v += MOD & (v >> width)) ; REFOP(-=, v -= rhs.v, v += MOD & (v >> width))
// fits for MOD^2 <= 9e18
REFOP(*=, v = static_cast<T>(1LL * v * rhs.v % MOD)) ; REFOP(/=, *this *= inverse(rhs.v))
#define VALOP(op) friend Modular operator op (Modular a, const Modular &b) { return a op##= b; }
VALOP(+) ; VALOP(-) ; VALOP(*) ; VALOP(/)
Modular operator-() const { return 0 - *this; }
friend bool operator == (const Modular &lhs, const Modular &rhs) { return lhs.v == rhs.v; }
friend bool operator != (const Modular &lhs, const Modular &rhs) { return lhs.v != rhs.v; }
friend std::istream & operator>>(std::istream &I, Modular &m) { T x; I >> x, m = x; return I; }
friend std::ostream & operator<<(std::ostream &O, const Modular &m) { return O << m.v; }
private:
constexpr static int width = sizeof(T) * 8 - 1;
T v;
static T inverse(T a) {
// copy from tourist's template
T u = 0, v = 1, m = MOD;
while (a != 0) {
T t = m / a;
m -= t * a; std::swap(a, m);
u -= t * v; std::swap(u, v);
}
assert(m == 1);
return u;
}
};
using lld = int64_t;
using llf = long double;
template <typename T> using max_heap = std::priority_queue<T,vector<T>,less<T> >;
template <typename T> using min_heap = std::priority_queue<T,vector<T>,greater<T> >;
template <typename V, typename T> int get_pos(const V &v, T x) { return lower_bound(all(v),x) - begin(v); }
template <typename V> void sort_uni(V &v) { sort(all(v)), v.erase(unique(all(v)),end(v)); }
template <typename T> bool chmin(T &x, const T &v) { return v < x ? (x=v, true) : false; }
template <typename T> bool chmax(T &x, const T &v) { return x < v ? (x=v, true) : false; }
constexpr inline lld cdiv(lld x, lld m) { return x/m + (x%m ? (x<0) ^ (m>0) : 0); } // ceiling divide
constexpr inline lld modpow(lld e,lld p,lld m) { lld r=1; for(e%=m;p;p>>=1,e=e*e%m) if(p&1) r=r*e%m; return r; }/*}}}*/
constexpr llf eps = 1e-9;
constexpr lld maxn = 3025, INF = 1e18, mod = 998244353, KK = 14699, inf = 1e9;
using Mint = Modular<int, mod>;
Mint modpow(Mint e, uint64_t p) { Mint r = 1; while (p) (p&1) && (r *= e), e *= e, p >>= 1; return r; } // 0^0 = 1
const auto dummy = [] { return cin.tie(nullptr)->sync_with_stdio(false); }();
void solve() {
int n, m, s, t;
cin >> n >> m >> s >> t;
--s, --t;
vector<int> cost(n);
for (int &x : cost) cin >> x;
vector<vector<int>> g(n), rg(n);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
--u, --v;
g[u].emplace_back(v);
rg[v].emplace_back(u);
}
vector<vector<int>> d(n, vector<int>(n, inf));
for (int S = 0; S < n; S++) {
min_heap<pair<int,int>> h;
h.emplace(d[S][S] = 0, S);
while (!h.empty()) {
auto [D, i] = h.top(); h.pop();
if (d[S][i] != D) continue;
for (int j : g[i]) {
if (d[S][j] > d[S][i] + cost[j]) {
d[S][j] = d[S][i] + cost[j];
h.emplace(d[S][j], j);
}
}
}
}
min_heap<tuple<int,int,int>> pq;
vector<vector<int>> dp(n, vector<int>(n, inf));
auto relax = [&](int u, int v, int w) {
if (dp[u][v] > w) {
dp[u][v] = w;
pq.emplace(dp[u][v], u, v);
}
};
pq.emplace(dp[s][s] = cost[s], s, s);
while (!pq.empty()) {
auto [D, a, b] = pq.top(); pq.pop();
if (D != dp[a][b]) continue;
for (int x : g[a])
relax(x, b, dp[a][b] + (x==b ? 0 : cost[x]));
for (int x : rg[b])
relax(a, x, dp[a][b] + (x==a ? 0 : cost[x]));
if (a != b) {
relax(b, a, dp[a][b] + d[a][b] - cost[b]);
}
}
cout << dp[t][t] << '\n';
}
signed main() {
int T;
cin >> T;
while (T--)
solve();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3796kb
input:
3 4 5 1 4 1 1 1 1 1 2 2 3 3 1 4 2 3 4 4 4 1 2 1 1 1 1 1 2 2 3 3 4 4 1 4 8 1 3 1 100 1 1 1 2 2 1 2 3 3 2 1 4 4 1 3 4 4 3
output:
4 4 3
result:
ok 3 number(s): "4 4 3"
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 3832kb
input:
1 2 0 1 2 1 1
output:
1000000000
result:
wrong answer 1st numbers differ - expected: '-1', found: '1000000000'