QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#354717#4368. Oiligor_the_creatorWA 280ms3832kbC++175.4kb2024-03-15 21:43:032024-03-15 21:43:05

Judging History

你现在查看的是最新测评结果

  • [2024-03-15 21:43:05]
  • 评测
  • 测评结果:WA
  • 用时:280ms
  • 内存:3832kb
  • [2024-03-15 21:43:03]
  • 提交

answer

#include <bits/stdc++.h>
#define int long long
#define pb push_back
#define PII pair<int,int>
#define fi first
#define se second
using namespace std;
typedef double db;

const int N = 2e3 + 5;
const int Mod = 998244353;
const int INF = 1e18;
const db EPS = 0;

// 精度、符号: 
inline int sign(db a) { return a < -EPS ? -1 : a > EPS;}
inline int cmp(db a, db b) { return sign(a - b);}
// 点类:
struct P{
	db x, y;
	P () {};
	P (db _x, db _y) : x(_x), y(_y) {}
	P operator + (P p) {return {x + p.x, y + p.y};}
	P operator - (P p) {return {x - p.x, y - p.y};}
	P operator * (db d) {return {x * d, y * d};}
	P operator / (db d) {return {x / d, y / d};}
	
	bool operator < (P p) const { // ?: 0, 1e-9, 2e-9...
		int c = cmp(x, p.x);
		if (c) return c == -1;
		return cmp(y, p.y) == -1;
	}
	
	bool operator == (P o) const {
		return cmp(x, o.x) == 0 && cmp(y, o.y) == 0;
	}
	
	db dot(P p) {return x * p.x + y * p.y;} // 点积
	db det(P p) {return x * p.y - y * p.x;} // 叉积
	
	db distTo(P p) {return (*this - p).abs();}
	db alpha() {return atan2(y, x);} // 范围:[-pai, pai] 
	// 反正切值,极角,long double 用 atan2l() ,三角函数比较慢 
	void read() {cin >> x >> y;}
	void write() {cout << "(" << x << "," << y << ")" << "\n";}
	db abs() {return sqrt(abs2());}
	db abs2() {return x * x + y * y;}
    int quad() const {return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0);}
	// 判断在上半边还是下半边 
	P rot90() {return P{-y, x};} // 逆时针旋转90度
	P unit() {return *this/abs();} // 单位向量 
	P rot(db an) {return {x * cos(an) - y * sin(an), x * sin(an) + y * cos(an)};} 
	// 逆时针转an度, (x+yi)(cos0+sin0i) 
}; 

#define cross(p1, p2, p3) ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
// = p1p2 x p1p3 = (p2 - p1) x (p3 - p1) (叉乘)
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3)) // 求叉乘符号
// >0 : 三点乘逆时针, =0:三点共线,<0:顺时针 

bool chkLL(P p1, P p2, P q1, P q2) // 直线p、q是否恰有一个交点 
{
	db s1 = cross(q1, q2, p1), s2 = -cross(q1, q2, p2);
	return sign(s1 + s2) != 0; 
}

P isLL(P p1, P p2, P q1, P q2) // 求出两条直线的交点 
{
	db s1 = cross(q1, q2, p1), s2 = -cross(q1, q2, p2);
	return (p1 * s2 + p2 * s1) / (s1 + s2);
} 

bool intersect(db l1, db r1, db l2, db r2) // 判断区间[l1,r1]和[l2,r2]是否相交 
{
	if (l1 > r1) swap(l1, r1); if (l2 > r2) swap(l2, r2);
	return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

bool isSS(P p1, P p2, P q1, P q2) // 线段相交(有公共点就行) 
{
	return intersect(p1.x, p2.x, q1.x, q2.x) && intersect(p1.y, p2.y, q1.y, q2.y) && 
	crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 && crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

bool isSS_strict(P p1, P p2, P q1, P q2) // 线段严格相交('x'只有一个公共点且不是端点) 
{
	return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 && crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0; 
}

bool isMiddle(db a, db m, db b) // m是否在ab之间 
{
	return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) // 点m是否在ab之间 
{
	return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
} 

bool onSeg(P p1, P p2, P q) // 点q是否在线段p1p2上 
{
	return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
	// crossOp容易有精度问题...  
}

bool onSeg_strict(P p1, P p2, P q) // 严格版,点积判方向 
{
	return crossOp(p1, p2, q) == 0 && sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
} 

P proj(P p1, P p2, P q) // 求q到直线p1p2的投影(垂足) attention: p1!=p2
{
	P dir = p2 - p1;
	return p1 + dir * (dir.dot(q - p1) / dir.abs2());
} 

P reflect(P p1, P p2, P q) // 求q以p1p2为轴的反射 
{
	return proj(p1, p2, q) * 2ll - q;
}

db nearest(P p1, P p2, P q) // 求q到p1p2的最小距离 
{
	if (p1 == p2) return p1.distTo(q);
	P h = proj(p1, p2, q);
	if (isMiddle(p1, h, p2)) return q.distTo(h);
	return min(p1.distTo(q), p2.distTo(q));
}

db disSS(P p1, P p2, P q1, P q2) // 求两条线段的距离 
{
	if (isSS(p1, p2, q1, q2)) return 0;
	return min({nearest(p1, p2, q1), nearest(p1, p2, q2), nearest(q1, q2, p1), nearest(q1, q2, p2)}); 
}

int n;

struct L{
	P l, r;
	int w;
}d[N];

int work(P p)
{
	vector<pair<P, int>> cnt;
	for (int i = 1; i <= n; ++i) {
		if (d[i].l.y == p.y) continue;
		P p1 = d[i].l - p, p2 = d[i].r - p;
		if (d[i].l.y > p.y) {
			cnt.pb({p1, -d[i].w});
			cnt.pb({p2, d[i].w});
		}
		else {
			cnt.pb({p1 * (-1), -d[i].w});
			cnt.pb({p2 * (-1), d[i].w});
		}
	}
	sort(cnt.begin(), cnt.end(), [&](pair<P, int> &a, pair<P, int> &b) {
		db q = a.fi.det(b.fi);
		if (q) return q > 0;
		return a.se > b.se;
	});
	int ans = 0, now = 0;
	for (auto i: cnt) {
		now += i.se;
		ans = max(ans, now);
	}
	return ans;
}

void solve()
{
	int xl, xr, y;
	cin >> n;
	for (int i = 1; i <= n; ++i) {
		cin >> xl >> xr >> y;
		if (xl > xr) swap(xl, xr);
		d[i].l = P(xl, y);
		d[i].r = P(xr, y);
		d[i].w = xr - xl;
	}
	int ans = 0;
	for (int i = 1; i <= n; ++i)
		ans = max({ans, work(d[i].l) + d[i].w, work(d[i].r) + d[i].w});
	cout << ans << "\n";
}

signed main()
{
	std::ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	int t = 1;
//	cin >> t;
	while (t--)
		  solve();
	return 0;
}
/*
5
100 180 20
30 60 30
70 110 40
10 40 50
0 80 70

*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3608kb

input:

5
100 180 20
30 60 30
70 110 40
10 40 50
0 80 70

output:

200

result:

ok single line: '200'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

3
50 60 10
-42 -42 20
25 0 10

output:

25

result:

ok single line: '25'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3540kb

input:

1
-100 180 20

output:

280

result:

ok single line: '280'

Test #4:

score: 0
Accepted
time: 1ms
memory: 3560kb

input:

1
-1000000 1000000 1

output:

2000000

result:

ok single line: '2000000'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3776kb

input:

1
-1000000 1000000 1000000

output:

2000000

result:

ok single line: '2000000'

Test #6:

score: 0
Accepted
time: 1ms
memory: 3832kb

input:

1
-1000000 -999999 1000000

output:

1

result:

ok single line: '1'

Test #7:

score: 0
Accepted
time: 1ms
memory: 3616kb

input:

1
1000000 999999 1000000

output:

1

result:

ok single line: '1'

Test #8:

score: 0
Accepted
time: 0ms
memory: 3832kb

input:

2
-1000 0 200
1 1000 200

output:

1000

result:

ok single line: '1000'

Test #9:

score: -100
Wrong Answer
time: 280ms
memory: 3580kb

input:

1000
737368 429284 959063
-548693 513523 43074
243164 -465669 860567
422975 -244747 588631
-136535 -470055 501433
-580596 -269833 22422
476738 -448258 866889
358773 563858 950905
-923261 208187 66835
-295330 444422 360513
-903435 841952 491761
377801 520064 65247
479135 -307498 426574
-794533 -46924...

output:

485034187

result:

wrong answer 1st lines differ - expected: '490622362', found: '485034187'