QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#353297 | #7634. Cards | Misuki | AC ✓ | 933ms | 15904kb | C++20 | 8.1kb | 2024-03-14 01:51:52 | 2024-03-14 01:51:52 |
Judging History
answer
#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <compare>
#include <complex>
#include <concepts>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numbers>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <span>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
//#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)
#define clock chrono::steady_clock::now().time_since_epoch().count()
#ifdef DEBUG
#define dbg(x) cout << (#x) << " = " << x << '\n'
#else
#define dbg(x)
#endif
namespace R = std::ranges;
namespace V = std::views;
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb
template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
for(const T &X : arr)
os << X << ' ';
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
for(const T &X : vec)
os << X << ' ';
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
for(const T &x : s)
os << x << ' ';
return os;
}
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be a prime less than 2^30.
template<uint32_t mod>
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 res = 1, base = mod;
for(i32 i = 0; i < 31; i++)
res *= base, base *= base;
return -res;
}
static constexpr u32 get_mod() {
return mod;
}
static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
static constexpr u32 r = get_r(); //-P^{-1} % 2^32
u32 a;
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * r) * mod) >> 32;
}
static u32 transform(const u64 &b) {
return reduce(u64(b) * n2);
}
MontgomeryModInt() : a(0) {}
MontgomeryModInt(const int64_t &b)
: a(transform(b % mod + mod)) {}
mint pow(u64 k) const {
mint res(1), base(*this);
while(k) {
if (k & 1)
res *= base;
base *= base, k >>= 1;
}
return res;
}
mint inverse() const { return (*this).pow(mod - 2); }
u32 get() const {
u32 res = reduce(a);
return res >= mod ? res - mod : res;
}
mint& operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint &b) {
a = reduce(u64(a) * b.inverse().a);
return *this;
}
mint operator-() { return mint() - mint(*this); }
bool operator==(mint b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(mint b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
friend mint operator+(mint a, mint b) { return a += b; }
friend mint operator-(mint a, mint b) { return a -= b; }
friend mint operator*(mint a, mint b) { return a *= b; }
friend mint operator/(mint a, mint b) { return a /= b; }
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t val;
is >> val;
b = mint(val);
return is;
}
};
using mint = MontgomeryModInt<998244353>;
//reference: https://judge.yosupo.jp/submission/69896
//remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD
//remark: a.size() <= 2^K must be satisfied
//some common modulo: 998244353 = 2^23 * 119 + 1, R = 3
// 469762049 = 2^26 * 7 + 1, R = 3
// 1224736769 = 2^24 * 73 + 1, R = 3
template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>>
struct NTT {
using u32 = uint32_t;
static constexpr u32 mod = (1 << k) * c + 1;
static constexpr u32 get_mod() { return mod; }
static void ntt(vector<Mint> &a, bool inverse) {
static array<Mint, 30> w, w_inv;
if (w[0] == 0) {
Mint root = 2;
while(root.pow((mod - 1) / 2) == 1) root += 1;
for(int i = 0; i < 30; i++)
w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i];
}
int n = ssize(a);
if (not inverse) {
for(int m = n; m >>= 1; ) {
Mint ww = 1;
for(int s = 0, l = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
Mint x = a[i], y = a[j] * ww;
a[i] = x + y, a[j] = x - y;
}
ww *= w[__builtin_ctz(++l)];
}
}
} else {
for(int m = 1; m < n; m *= 2) {
Mint ww = 1;
for(int s = 0, l = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
Mint x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * ww;
}
ww *= w_inv[__builtin_ctz(++l)];
}
}
Mint inv = 1 / Mint(n);
for(Mint &x : a) x *= inv;
}
}
static vector<Mint> conv(vector<Mint> a, vector<Mint> b) {
int sz = ssize(a) + ssize(b) - 1;
int n = bit_ceil((u32)sz);
a.resize(n, 0);
ntt(a, false);
b.resize(n, 0);
ntt(b, false);
for(int i = 0; i < n; i++)
a[i] *= b[i];
ntt(a, true);
a.resize(sz);
return a;
}
};
NTT ntt;
vector<mint> polyPow(vector<mint> f, int k) {
unsigned deg = ssize(f) - 1;
f.resize(bit_ceil(deg * k + 1));
ntt.ntt(f, false);
for(mint &x : f)
x = x.pow(k);
ntt.ntt(f, true);
f.resize(deg * k + 1);
return f;
}
vector<mint> operator+(vector<mint> a, vector<mint> b) {
if (ssize(a) > ssize(b)) a.swap(b);
for(int i = 0; i < ssize(a); i++)
b[i] += a[i];
return b;
}
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
int n, m; cin >> n >> m;
vector<mint> T(5);
for(mint &x : T)
cin >> x;
mint sum = accumulate(T.begin(), T.end(), mint(0));
for(mint &x : T)
x /= sum;
auto low = [&](int i) { return 2 * i; };
auto dc = [&](int l, int r, vector<mint> vl, auto self) -> vector<mint> {
if (l == r) return vl;
if (l + 1 == r) {
vector<mint> vr(ssize(vl) + 4);
for(int i = 0; i < ssize(vl); i++)
for(int j = 0; j < 5; j++)
vr[i + j] += vl[i] * T[j];
return {vr.begin() + min((int)vr.size(), low(r) - low(l)), vr.end()};
}
vector<mint> vr;
{
vector<mint> U = {vl.begin() + min(low(r) - low(l), (int)vl.size()), vl.end()};
vr = vr + ntt.conv(U, polyPow(T, r - l));
}
{
int mid = (l + r) / 2;
vector<mint> D = {vl.begin(), vl.begin() + min(low(r) - low(l), (int)vl.size())};
vr = vr + self(mid, r, self(l, mid, D, self), self);
}
return vr;
};
vector<mint> init(n + 1);
init[n] = 1;
auto ans = dc(0, m, init, dc);
cout << accumulate(ans.begin(), ans.end(), mint(0)) << '\n';
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3552kb
input:
1 1 1 1 1 1 1
output:
399297742
result:
ok 1 number(s): "399297742"
Test #2:
score: 0
Accepted
time: 917ms
memory: 15580kb
input:
100000 100000 1234 4567 7890 4321 54321
output:
348074135
result:
ok 1 number(s): "348074135"
Test #3:
score: 0
Accepted
time: 893ms
memory: 15544kb
input:
100000 100000 1 2 3 4 5
output:
639188342
result:
ok 1 number(s): "639188342"
Test #4:
score: 0
Accepted
time: 907ms
memory: 15704kb
input:
100000 100000 5 4 3 2 1
output:
211669278
result:
ok 1 number(s): "211669278"
Test #5:
score: 0
Accepted
time: 1ms
memory: 3848kb
input:
0 0 1 1 1 1 1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 400ms
memory: 8772kb
input:
1 50000 1 1 1 1 1
output:
548880636
result:
ok 1 number(s): "548880636"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
50000 1 1 1 1 1 1
output:
1
result:
ok 1 number(s): "1"
Test #8:
score: 0
Accepted
time: 890ms
memory: 15580kb
input:
100000 100000 234 666 7655 12234 0
output:
45268602
result:
ok 1 number(s): "45268602"
Test #9:
score: 0
Accepted
time: 899ms
memory: 15584kb
input:
99999 99999 12345 54332 12345 65432 34444
output:
360543661
result:
ok 1 number(s): "360543661"
Test #10:
score: 0
Accepted
time: 900ms
memory: 15904kb
input:
99998 99998 1 1 1 1 1
output:
602326230
result:
ok 1 number(s): "602326230"
Test #11:
score: 0
Accepted
time: 899ms
memory: 15580kb
input:
99998 99997 1 1 1 1 1
output:
159752985
result:
ok 1 number(s): "159752985"
Test #12:
score: 0
Accepted
time: 898ms
memory: 15632kb
input:
99997 100000 1 2 3 4 5
output:
139603712
result:
ok 1 number(s): "139603712"
Test #13:
score: 0
Accepted
time: 933ms
memory: 15572kb
input:
100000 99997 1 2 2 1 3232323
output:
363030953
result:
ok 1 number(s): "363030953"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
0 0 0 0 1 0 0
output:
1
result:
ok 1 number(s): "1"
Test #15:
score: 0
Accepted
time: 65ms
memory: 4584kb
input:
10000 10000 91095828 93770094 5303328 491263 50290308
output:
135900098
result:
ok 1 number(s): "135900098"
Test #16:
score: 0
Accepted
time: 65ms
memory: 4516kb
input:
9226 9995 62366139 253808 1929312 491263 4375669
output:
812662634
result:
ok 1 number(s): "812662634"
Test #17:
score: 0
Accepted
time: 71ms
memory: 5012kb
input:
18641 10000 1061 4359 1330 13764 16043
output:
112339046
result:
ok 1 number(s): "112339046"
Extra Test:
score: 0
Extra Test Passed