QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#353297#7634. CardsMisukiAC ✓933ms15904kbC++208.1kb2024-03-14 01:51:522024-03-14 01:51:52

Judging History

你现在查看的是最新测评结果

  • [2024-03-14 01:51:52]
  • 评测
  • 测评结果:AC
  • 用时:933ms
  • 内存:15904kb
  • [2024-03-14 01:51:52]
  • 提交

answer

#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <compare>
#include <complex>
#include <concepts>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numbers>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <span>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>

//#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define clock chrono::steady_clock::now().time_since_epoch().count()

#ifdef DEBUG
#define dbg(x) cout << (#x) << " = " << x << '\n'
#else
#define dbg(x)
#endif

namespace R = std::ranges;
namespace V = std::views;

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb

template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(const T &X : arr)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(const T &X : vec)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(const T &x : s)
    os << x << ' ';
  return os;
}

//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be a prime less than 2^30.

template<uint32_t mod>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
  static constexpr u32 r = get_r(); //-P^{-1} % 2^32

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint a, mint b) { return a += b; }
  friend mint operator-(mint a, mint b) { return a -= b; }
  friend mint operator*(mint a, mint b) { return a *= b; }
  friend mint operator/(mint a, mint b) { return a /= b; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

using mint = MontgomeryModInt<998244353>;

//reference: https://judge.yosupo.jp/submission/69896
//remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD
//remark: a.size() <= 2^K must be satisfied
//some common modulo: 998244353  = 2^23 * 119 + 1, R = 3
//                    469762049  = 2^26 * 7   + 1, R = 3
//                    1224736769 = 2^24 * 73  + 1, R = 3

template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>>
struct NTT {

  using u32 = uint32_t;
  static constexpr u32 mod = (1 << k) * c + 1;
  static constexpr u32 get_mod() { return mod; }

  static void ntt(vector<Mint> &a, bool inverse) {
    static array<Mint, 30> w, w_inv;
    if (w[0] == 0) {
      Mint root = 2;
      while(root.pow((mod - 1) / 2) == 1) root += 1;
      for(int i = 0; i < 30; i++)
        w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i];
    }
    int n = ssize(a);
    if (not inverse) {
      for(int m = n; m >>= 1; ) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j] * ww;
            a[i] = x + y, a[j] = x - y;
          }
          ww *= w[__builtin_ctz(++l)];
        }
      }
    } else {
      for(int m = 1; m < n; m *= 2) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j];
            a[i] = x + y, a[j] = (x - y) * ww;
          }
          ww *= w_inv[__builtin_ctz(++l)];
        }
      }
      Mint inv = 1 / Mint(n);
      for(Mint &x : a) x *= inv;
    }
  }

  static vector<Mint> conv(vector<Mint> a, vector<Mint> b) {
    int sz = ssize(a) + ssize(b) - 1;
    int n = bit_ceil((u32)sz);

    a.resize(n, 0);
    ntt(a, false);
    b.resize(n, 0);
    ntt(b, false);

    for(int i = 0; i < n; i++)
      a[i] *= b[i];

    ntt(a, true);

    a.resize(sz);

    return a;
  }
};

NTT ntt;

vector<mint> polyPow(vector<mint> f, int k) {
  unsigned deg = ssize(f) - 1;
  f.resize(bit_ceil(deg * k + 1));
  ntt.ntt(f, false);
  for(mint &x : f)
    x = x.pow(k);
  ntt.ntt(f, true);
  f.resize(deg * k + 1);
  return f;
}

vector<mint> operator+(vector<mint> a, vector<mint> b) {
  if (ssize(a) > ssize(b)) a.swap(b);
  for(int i = 0; i < ssize(a); i++)
    b[i] += a[i];
  return b;
}

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int n, m; cin >> n >> m;
  vector<mint> T(5);
  for(mint &x : T)
    cin >> x;

  mint sum = accumulate(T.begin(), T.end(), mint(0));
  for(mint &x : T)
    x /= sum;

  auto low = [&](int i) { return 2 * i; };
  auto dc = [&](int l, int r, vector<mint> vl, auto self) -> vector<mint> {
    if (l == r) return vl;
    if (l + 1 == r) {
      vector<mint> vr(ssize(vl) + 4);
      for(int i = 0; i < ssize(vl); i++)
        for(int j = 0; j < 5; j++)
          vr[i + j] += vl[i] * T[j];
      return {vr.begin() + min((int)vr.size(), low(r) - low(l)), vr.end()};
    }

    vector<mint> vr;
    {
      vector<mint> U = {vl.begin() + min(low(r) - low(l), (int)vl.size()), vl.end()};
      vr = vr + ntt.conv(U, polyPow(T, r - l));
    }
    {
      int mid = (l + r) / 2;
      vector<mint> D = {vl.begin(), vl.begin() + min(low(r) - low(l), (int)vl.size())};
      vr = vr + self(mid, r, self(l, mid, D, self), self);
    }

    return vr;
  };

  vector<mint> init(n + 1);
  init[n] = 1;
  auto ans = dc(0, m, init, dc);
  cout << accumulate(ans.begin(), ans.end(), mint(0)) << '\n';

  return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3552kb

input:

1 1
1 1 1 1 1

output:

399297742

result:

ok 1 number(s): "399297742"

Test #2:

score: 0
Accepted
time: 917ms
memory: 15580kb

input:

100000 100000
1234 4567 7890 4321 54321

output:

348074135

result:

ok 1 number(s): "348074135"

Test #3:

score: 0
Accepted
time: 893ms
memory: 15544kb

input:

100000 100000
1 2 3 4 5

output:

639188342

result:

ok 1 number(s): "639188342"

Test #4:

score: 0
Accepted
time: 907ms
memory: 15704kb

input:

100000 100000
5 4 3 2 1

output:

211669278

result:

ok 1 number(s): "211669278"

Test #5:

score: 0
Accepted
time: 1ms
memory: 3848kb

input:

0 0
1 1 1 1 1

output:

1

result:

ok 1 number(s): "1"

Test #6:

score: 0
Accepted
time: 400ms
memory: 8772kb

input:

1 50000
1 1 1 1 1

output:

548880636

result:

ok 1 number(s): "548880636"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3864kb

input:

50000 1
1 1 1 1 1

output:

1

result:

ok 1 number(s): "1"

Test #8:

score: 0
Accepted
time: 890ms
memory: 15580kb

input:

100000 100000
234 666 7655 12234 0

output:

45268602

result:

ok 1 number(s): "45268602"

Test #9:

score: 0
Accepted
time: 899ms
memory: 15584kb

input:

99999 99999
12345 54332 12345 65432 34444

output:

360543661

result:

ok 1 number(s): "360543661"

Test #10:

score: 0
Accepted
time: 900ms
memory: 15904kb

input:

99998 99998
1 1 1 1 1

output:

602326230

result:

ok 1 number(s): "602326230"

Test #11:

score: 0
Accepted
time: 899ms
memory: 15580kb

input:

99998 99997
1 1 1 1 1

output:

159752985

result:

ok 1 number(s): "159752985"

Test #12:

score: 0
Accepted
time: 898ms
memory: 15632kb

input:

99997 100000
1 2 3 4 5

output:

139603712

result:

ok 1 number(s): "139603712"

Test #13:

score: 0
Accepted
time: 933ms
memory: 15572kb

input:

100000 99997
1 2 2 1 3232323

output:

363030953

result:

ok 1 number(s): "363030953"

Test #14:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

0 0
0 0 1 0 0

output:

1

result:

ok 1 number(s): "1"

Test #15:

score: 0
Accepted
time: 65ms
memory: 4584kb

input:

10000 10000
91095828 93770094 5303328 491263 50290308

output:

135900098

result:

ok 1 number(s): "135900098"

Test #16:

score: 0
Accepted
time: 65ms
memory: 4516kb

input:

9226 9995
62366139 253808 1929312 491263 4375669

output:

812662634

result:

ok 1 number(s): "812662634"

Test #17:

score: 0
Accepted
time: 71ms
memory: 5012kb

input:

18641 10000
1061 4359 1330 13764 16043

output:

112339046

result:

ok 1 number(s): "112339046"

Extra Test:

score: 0
Extra Test Passed