QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#351485 | #7514. Clique Challenge | zlc1114 | ML | 1ms | 4136kb | C++17 | 8.3kb | 2024-03-11 23:20:53 | 2024-03-11 23:20:54 |
Judging History
answer
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#include <sstream>
#include <fstream>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <utility>
#include <cassert>
#include <bitset>
#include <functional>
#include <random>
using namespace std;
#define REP(I,N) for (I=0;I<N;I++)
#define rREP(I,N) for (I=N-1;I>=0;I--)
#define rep(I,S,N) for (I=S;I<N;I++)
#define rrep(I,S,N) for (I=N-1;I>=S;I--)
#define FOR(I,S,N) for (I=S;I<=N;I++)
#define rFOR(I,S,N) for (I=N;I>=S;I--)
#define REP_(I,N) for (int I=0;I<N;I++)
#define rREP_(I,N) for (int I=N-1;I>=0;I--)
#define rep_(I,S,N) for (int I=S;I<N;I++)
#define rrep_(I,S,N) for (int I=N-1;I>=S;I--)
#define FOR_(I,S,N) for (int I=S;I<=N;I++)
#define rFOR_(I,S,N) for (int I=N;I>=S;I--)
#define DEBUG
#ifdef DEBUG
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define deputs(str) fprintf(stderr, "%s\n",str)
#else
#define debug(...)
#define deputs(str)
#endif // DEBUG
typedef unsigned long long ULL;
typedef unsigned long long ull;
typedef unsigned int ui;
typedef long long LL;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
const int INF=0x3f3f3f3f;
const LL INFF=0x3f3f3f3f3f3f3f3fll;
const LL maxn=1e6+7;
const double pi=acos(-1.0);
const double eps=0.0000000001;
template<typename T>inline T gcd(T a, T b) {return b?gcd(b,a%b):a;}
template<typename T>inline void pr2(T x,int k=64) {ll i; REP(i,k) debug("%d",(x>>i)&1); putchar(' ');}
template<typename T>inline void add_(T &A,int B,ll MOD) {A+=B; (A>=MOD) &&(A-=MOD);}
template<typename T>inline void mul_(T &A,ll B,ll MOD) {A=(A*B)%MOD;}
template<typename T>inline void mod_(T &A,ll MOD) {A%=MOD; A+=MOD; A%=MOD;}
template<typename T>inline void max_(T &A,T B) {(A<B) &&(A=B);}
template<typename T>inline void min_(T &A,T B) {(A>B) &&(A=B);}
template<typename T>inline T abs(T a) {return a>0?a:-a;}
template<typename T>inline T fastgcd(T a, T b) {
int az=__builtin_ctz(a),bz=__builtin_ctz(b),z=min(az,bz),diff; b>>=bz;
while (a) {
a>>=az; diff=b-a; az=__builtin_ctz(diff);
min_(b,a); a=abs(diff);
}
return b<<z;
}
int startTime;
void startTimer() {startTime=clock();}
void printTimer() {debug("/--- Time: %ld milliseconds ---/\n",clock()-startTime);}
typedef array<int,4> ar4;
typedef array<int,3> ar3;
std::mt19937 rng(time(0));
std::mt19937_64 rng64(time(0));
const int mod = 1e9+7;
// const int mod=998244353;
// int mod=1;
struct mint {
long long x;
mint():x(0) {}
mint(long long x):x((x%mod+mod)%mod) {}
// mint(long long x):x(x){}
mint &fix() { x = (x%mod+mod)%mod; return *this;}
mint operator-() const { return mint(0) - *this;}
mint operator~() const { return mint(1) / *this;}
mint &operator+=(const mint &a) { if ((x+=a.x)>=mod) x-=mod; return *this;}
mint &operator-=(const mint &a) { if ((x+=mod-a.x)>=mod) x-=mod; return *this;}
mint &operator*=(const mint &a) { (x*=a.x)%=mod; return *this;}
mint &operator/=(const mint &a) { (x*=a.pow(mod-2).x)%=mod; return *this;}
mint operator+(const mint &a)const { return mint(*this) += a;}
mint operator-(const mint &a)const { return mint(*this) -= a;}
mint operator*(const mint &a)const { return mint(*this) *= a;}
mint operator/(const mint &a)const { return mint(*this) /= a;}
mint pow(long long t) const {
mint ret=1,cur=x;
for (; t; t>>=1ll,cur=cur*cur)
if (t&1) ret=ret*cur;
return ret;
}
bool operator<(const mint &a)const { return x < a.x;}
bool operator==(const mint &a)const { return x == a.x;}
};
// 0、N比较大的时候可以试试随机shuffle一下贪心选择,或者转化为二分图
// 1、最大团点的数量=补图中最大独立集点的数量
// 2、二分图中,最大独立集+最小点覆盖=整个图的点数量
// 3、二分图中,最小点覆盖=最大匹配
// 4、二分图中,最小边覆盖=最大独立集
// 5、图的染色问题中,最少需要的颜色的数量=最大团点的数量
// 一般图最大团/计数:复杂度可以做到2^(n/2),加剪枝60应该没问题
// CCPC2023网络赛C
// 题意:n=1000; m=1000; 求团个数, 答案mod 1e9+7
// 按度数排一下序, 对于每个团, 枚举团中最小编号的点, 求答案加起来
// 那么团中的每个点向右最多sqrt(2m)条边(因为如果度数为k, 右边每个点度数都>=k)
// 答案加上[i的adj edge的团数量]
// 团和补图独立集是等价的; 求团的数量=求补图独立集数量
// 考虑一个n个点的连通图, 计算最大团个数: 枚举编号最大的点直接暴力复杂度是2^n
// 但是如果记忆化一下2^(n/2),那么复杂度会变成2^(n/2)
// 这里就是枚举一下最大那个u是否被选择过了, dp[S]=dp[S^(1<<u)]+dp[S^(1<<u)^adj[u]];
// 状态数量很多所以这里只能记忆化一部分
// 但是很容易被卡满; 可以加剪枝
// 1.枚举的u度数最大
// 2.如果可以把团分成不相交的两份, 那就直接分成两半去搞然后乘起来
// 最差时间复杂度是, sqrt个点度数是sqrt, 总复杂度sqrt*2^(sqrt/2)=sqrt*1.414^sqrt
template<class Type>
struct Clique { // Type in {int, long long}; 代表点数量>=k
// 状态压缩一下N; N不要太大否则状态都存不下
map<Type,mint> MP; // 记忆化
vector<Type> edge;
Clique(int n) {
// printf("init %d\n",n);
assert(n<=64);
MP.clear();
edge.resize(n);
fill(edge.begin(),edge.end(),0);
}
void addedge(int x,int y) {
assert(x<64); assert(y<64);
// printf("addedge %d %d\n",x,y);
edge[x]|=(Type)1<<y;
edge[y]|=(Type)1<<x;
}
void flip() { // 变成补图(团=补图独立集)
for (Type &e:edge) e^=((Type)1<<edge.size())-1;
}
mint independent_set(Type S) {
// printf("solve %lld ",S);
// pr2(S,edge.size());
// puts("");
// S: 当前存在哪些id set
if (!S) return 1;
if (MP.count(S)) return MP[S];
int c=__builtin_popcount(S),id=__builtin_ctz(S),mxsz=-1;
if (c>=10) { // 2.如果可以把团分成不相交的两份, 那就直接分成两半去搞然后乘起来
int mask=S; // mask:从id能走到的点
for (int cur=(Type)1<<id; cur;) {
int x=__builtin_ctz(cur); mask^=(Type)1<<x;
cur=(cur|edge[x])&mask;
}
if (mask) { // 可以分成两块
mint res1=independent_set(mask),res2=independent_set(S^mask);
mint ans=res1*res2;
return ans;
}
}
for (int cur=S; cur;) { // 1.枚举的点度数最大
int x=__builtin_ctz(cur),cursz=__builtin_popcountll(S&edge[x]);
if (cursz>mxsz) mxsz=cursz,id=x;
cur^=(Type)1<<x;
}
mint res1=independent_set(S^(Type)1<<id);
mint res2=independent_set(S&~(edge[id]|(Type)1<<id));
mint ans=res1+res2;
if (c<=(int)edge.size()/2) MP[S]=ans;
return ans;
}
};
int solve() {
int n,m;
scanf("%d%d",&n,&m);
vector<vector<int>> edge(n+1);
FOR_(i,1,m) {
int x,y;
scanf("%d%d",&x,&y);
edge[x].push_back(y);
edge[y].push_back(x);
}
vector<int> id(n+1),pos(n+1);
FOR_(i,1,n) id[i]=i;
sort(id.begin()+1,id.begin()+1+n,[&](int x,int y) {
return edge[x].size()<edge[y].size();
});
mint ans=0;
FOR_(i,1,n) pos[id[i]]=i;
FOR_(i,1,n) {
int x=id[i],cur_n=0;
vector<int> reid(n+1,-1); // 给最大团用的
for (int y:edge[x]) if (id[y]>id[x])
reid[y]=cur_n++;
Clique<ull> clique(cur_n);
FOR_(y,1,n) if (reid[y]!=-1)
for (int z:edge[y]) if (reid[z]!=-1)
clique.addedge(reid[y],reid[z]);
clique.flip();
ans+=clique.independent_set(((ull)1<<cur_n)-1);
}
printf("%lld\n",ans.x);
return 0;
}
int main() {
solve();
// while (1) solve();
}
/*
3 2
1 2
2 3
3 3
1 2
1 3
2 3
*/
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3852kb
input:
3 2 1 2 2 3
output:
5
result:
ok single line: '5'
Test #2:
score: 0
Accepted
time: 0ms
memory: 4136kb
input:
3 3 1 2 1 3 2 3
output:
7
result:
ok single line: '7'
Test #3:
score: 0
Accepted
time: 1ms
memory: 3848kb
input:
1000 100 446 789 167 547 254 777 777 185 33 446 777 847 185 877 757 167 72 383 847 446 254 478 959 185 757 446 847 959 959 167 757 847 747 757 446 167 989 757 547 777 33 747 33 254 254 843 33 547 446 980 877 205 185 72 980 959 33 205 877 757 33 847 478 843 757 478 167 877 72 789 877 959 980 478 167 ...
output:
1373
result:
ok single line: '1373'
Test #4:
score: -100
Memory Limit Exceeded
input:
1000 1000 770 105 219 498 686 498 343 534 15 591 919 588 149 588 298 915 551 523 710 116 105 637 523 991 343 476 145 420 604 588 254 120 551 421 476 298 900 710 915 343 445 421 986 867 445 588 219 356 919 105 584 875 991 604 776 919 588 254 919 421 356 348 105 551 15 113 919 15 356 523 343 155 770 9...