QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#349576 | #8335. Fast Hash Transform | ucup-team987# | AC ✓ | 754ms | 47960kb | C++20 | 25.1kb | 2024-03-10 03:02:13 | 2024-03-10 03:02:14 |
Judging History
answer
/**
* date : 2024-03-10 04:02:04
* author : Nyaan
*/
#define NDEBUG
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2")
//
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
namespace fastio {
static constexpr int SZ = 1 << 17;
static constexpr int offset = 64;
char inbuf[SZ], outbuf[SZ];
int in_left = 0, in_right = 0, out_right = 0;
struct Pre {
char num[40000];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i * 4 + j] = n % 10 + '0';
n /= 10;
}
}
}
} constexpr pre;
void load() {
int len = in_right - in_left;
memmove(inbuf, inbuf + in_left, len);
in_right = len + fread(inbuf + len, 1, SZ - len, stdin);
in_left = 0;
}
void flush() {
fwrite(outbuf, 1, out_right, stdout);
out_right = 0;
}
void skip_space() {
if (in_left + offset > in_right) load();
while (inbuf[in_left] <= ' ') in_left++;
}
void single_read(char& c) {
if (in_left + offset > in_right) load();
skip_space();
c = inbuf[in_left++];
}
void single_read(string& S) {
skip_space();
while (true) {
if (in_left == in_right) load();
int i = in_left;
for (; i != in_right; i++) {
if (inbuf[i] <= ' ') break;
}
copy(inbuf + in_left, inbuf + i, back_inserter(S));
in_left = i;
if (i != in_right) break;
}
}
template <typename T,
enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_read(T& x) {
if (in_left + offset > in_right) load();
skip_space();
char c = inbuf[in_left++];
[[maybe_unused]] bool minus = false;
if constexpr (internal::is_broadly_signed_v<T>) {
if (c == '-') minus = true, c = inbuf[in_left++];
}
x = 0;
while (c >= '0') {
x = x * 10 + (c & 15);
c = inbuf[in_left++];
}
if constexpr (internal::is_broadly_signed_v<T>) {
if (minus) x = -x;
}
}
void rd() {}
template <typename Head, typename... Tail>
void rd(Head& head, Tail&... tail) {
single_read(head);
rd(tail...);
}
void single_write(const char& c) {
if (out_right > SZ - offset) flush();
outbuf[out_right++] = c;
}
void single_write(const bool& b) {
if (out_right > SZ - offset) flush();
outbuf[out_right++] = b ? '1' : '0';
}
void single_write(const string& S) {
flush(), fwrite(S.data(), 1, S.size(), stdout);
}
void single_write(const char* p) { flush(), fwrite(p, 1, strlen(p), stdout); }
template <typename T,
enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_write(const T& _x) {
if (out_right > SZ - offset) flush();
if (_x == 0) {
outbuf[out_right++] = '0';
return;
}
T x = _x;
if constexpr (internal::is_broadly_signed_v<T>) {
if (x < 0) outbuf[out_right++] = '-', x = -x;
}
constexpr int buffer_size = sizeof(T) * 10 / 4;
char buf[buffer_size];
int i = buffer_size;
while (x >= 10000) {
i -= 4;
memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
x /= 10000;
}
if (x < 100) {
if (x < 10) {
outbuf[out_right] = '0' + x;
++out_right;
} else {
uint32_t q = (uint32_t(x) * 205) >> 11;
uint32_t r = uint32_t(x) - q * 10;
outbuf[out_right] = '0' + q;
outbuf[out_right + 1] = '0' + r;
out_right += 2;
}
} else {
if (x < 1000) {
memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3);
out_right += 3;
} else {
memcpy(outbuf + out_right, pre.num + (x << 2), 4);
out_right += 4;
}
}
memcpy(outbuf + out_right, buf + i, buffer_size - i);
out_right += buffer_size - i;
}
void wt() {}
template <typename Head, typename... Tail>
void wt(const Head& head, const Tail&... tail) {
single_write(head);
wt(forward<const Tail>(tail)...);
}
template <typename... Args>
void wtn(const Args&... x) {
wt(forward<const Args>(x)...);
wt('\n');
}
struct Dummy {
Dummy() { atexit(flush); }
} dummy;
} // namespace fastio
using fastio::rd;
using fastio::skip_space;
using fastio::wt;
using fastio::wtn;
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;
// [0, 2^64 - 1)
u64 rng() {
static u64 _x = internal::seed();
return _x ^= _x << 7, _x ^= _x >> 9;
}
// [l, r]
i64 rng(i64 l, i64 r) {
assert(l <= r);
return l + rng() % u64(r - l + 1);
}
// [l, r)
i64 randint(i64 l, i64 r) {
assert(l < r);
return l + rng() % u64(r - l);
}
// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i) {
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end()) m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto& x : s) ret.push_back(x);
return ret;
}
// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r) {
assert(l < r);
return l + rnd() * (r - l);
}
template <typename T>
void randshf(vector<T>& v) {
int n = v.size();
for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
using namespace std;
struct Timer {
chrono::high_resolution_clock::time_point st;
Timer() { reset(); }
void reset() { st = chrono::high_resolution_clock::now(); }
long long elapsed() {
auto ed = chrono::high_resolution_clock::now();
return chrono::duration_cast<chrono::milliseconds>(ed - st).count();
}
long long operator()() { return elapsed(); }
};
//
using namespace std;
namespace std {
template <size_t N>
bool operator<(const bitset<N> &a, const bitset<N> &b) {
int f = (a ^ b)._Find_first();
return f == N ? false : a[f];
}
} // namespace std
template <size_t H_MAX, size_t W_MAX>
struct F2_Matrix {
using Mat = F2_Matrix;
int H, W;
array<bitset<W_MAX>, H_MAX> A;
F2_Matrix(int h = H_MAX, int w = W_MAX) : H(h), W(w) {
assert(0 <= h and h <= (int)H_MAX);
assert(0 <= w and w <= (int)W_MAX);
for (int i = 0; i < (int)H_MAX; i++) A[i].reset();
}
inline bitset<W_MAX> &operator[](int i) { return A[i]; }
inline const bitset<W_MAX> &operator[](int i) const { return A[i]; }
static Mat I(int n) {
Mat a(n, n);
for (int i = 0; i < n; i++) a[i][i] = true;
return a;
}
// (AND, XOR) 半環
// (AND, OR) 半環には operator/ を割り当てた
Mat &operator*=(const Mat &B) {
Mat C(H, B.W);
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (A[i][j]) C[i] ^= B[j];
}
}
swap(A, C.A);
return *this;
}
Mat operator*(const Mat &B) const { return Mat(*this) *= B; }
// (AND, OR) 半環
friend Mat and_or_product(const Mat &A, const Mat &B) {
Mat C(A.H, B.W);
for (int i = 0; i < A.H; i++) {
for (int j = 0; j < A.W; j++) {
if (A[i][j]) C[i] |= B[j];
}
}
return C;
}
// [0, wr) の範囲で掃き出し, rank を返す
int sweep(int wr = -1) {
if (wr == -1) wr = W;
int t = 0;
for (int u = 0; u < wr; u++) {
int piv = -1;
for (int i = t; i < H; i++) {
if (A[i][u]) {
piv = i;
break;
}
}
if (piv == -1) continue;
if (piv != t) swap(A[piv], A[t]);
for (int i = 0; i < H; i++) {
if (i != t && A[i][u]) A[i] ^= A[t];
}
t++;
}
return t;
}
Mat inverse() const {
assert(H == W);
int N = H;
F2_Matrix<H_MAX, W_MAX * 2> c(H, W * 2);
for (int i = 0; i < N; i++) {
c[i][i + N] = 1;
for (int j = 0; j < N; j++) {
c[i][j] = A[i][j];
}
}
int r = c.sweep();
assert(r == N);
Mat b(H, W);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
b[i][j] = c[i][j + N];
}
}
return b;
}
bool operator<(const Mat &rhs) const {
if (H != rhs.H) return H < rhs.H;
if (W != rhs.W) return W < rhs.W;
return A < rhs.A;
}
bool operator==(const Mat &rhs) const {
return H == rhs.H and W == rhs.W and A == rhs.A;
}
friend ostream &operator<<(ostream &os, const Mat &b) {
for (int i = 0; i < b.H; i++) {
os << "[ ";
for (int j = 0; j < b.W; j++) {
os << b[i][j] << ", ";
}
os << "],\n";
}
return os;
}
};
using namespace Nyaan;
template <typename T, typename F>
struct SegmentTree {
int N;
int size;
vector<T> seg;
const F f;
const T I;
SegmentTree(F _f, const T& I_) : N(0), size(0), f(_f), I(I_) {}
SegmentTree(int _N, F _f, const T& I_) : f(_f), I(I_) { init(_N); }
SegmentTree(const vector<T>& v, F _f, T I_) : f(_f), I(I_) {
init(v.size());
for (int i = 0; i < (int)v.size(); i++) {
seg[i + size] = v[i];
}
build();
}
void init(int _N) {
N = _N;
size = 1;
while (size < N) size <<= 1;
seg.assign(2 * size, I);
}
void set(int k, T x) { seg[k + size] = x; }
void build() {
for (int k = size - 1; k > 0; k--) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void update(int k, T x) {
k += size;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void add(int k, T x) {
k += size;
seg[k] += x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
// query to [a, b)
vi query(int a, int b) {
vi L, R;
for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
if (a & 1) L.push_back(a++);
if (b & 1) R.push_back(--b);
}
reverse(all(R));
copy(all(R), back_insert_iterator(L));
return L;
}
T& operator[](const int& k) { return seg[k + size]; }
// check(a[l] * ... * a[r-1]) が true となる最大の r
// (右端まですべて true なら N を返す)
template <class C>
int max_right(int l, C check) {
assert(0 <= l && l <= N);
assert(check(I) == true);
if (l == N) return N;
l += size;
T sm = I;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, seg[l]))) {
while (l < size) {
l = (2 * l);
if (check(f(sm, seg[l]))) {
sm = f(sm, seg[l]);
l++;
}
}
return l - size;
}
sm = f(sm, seg[l]);
l++;
} while ((l & -l) != l);
return N;
}
// check(a[l] * ... * a[r-1]) が true となる最小の l
// (左端まで true なら 0 を返す)
template <typename C>
int min_left(int r, C check) {
assert(0 <= r && r <= N);
assert(check(I) == true);
if (r == 0) return 0;
r += size;
T sm = I;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(seg[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (check(f(seg[r], sm))) {
sm = f(seg[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = f(seg[r], sm);
} while ((r & -r) != r);
return 0;
}
};
using _Mat = F2_Matrix<64, 64>;
using Mat = pair<_Mat, u64>;
u64 operator*(u64 a, const _Mat& b) {
bitset<64> bs;
bs.reset();
rep(j, 64) {
if (gbit(a, j)) bs ^= b[j];
}
return bs.to_ullong();
}
Mat operator*(const Mat& a, const Mat& b) {
_Mat c = a.first * b.first;
u64 d = (a.second * b.first) ^ b.second;
return mkp(c, d);
}
Mat gen() {
u64 B = 0;
int t;
rd(t);
_Mat m(64, 64);
rep(_, t) {
int s, o;
u64 a;
rd(s, o, a);
if (o == 0) {
// OR
rep(i, 64) {
if (gbit(a, i)) {
B ^= 1uLL << i;
} else {
m[(i + 64 - s) & 63].flip(i);
}
}
} else {
// AND
rep(i, 64) {
if (gbit(a, i)) {
m[(i + 64 - s) & 63].flip(i);
} else {
// do nothing
}
}
}
}
{
u64 b;
rd(b);
B ^= b;
}
return mkp(m, B);
}
void q() {
Timer t;
ll N, Q, C;
rd(N, Q, C);
V<Mat> init(N);
rep(i, N) init[i] = gen();
SegmentTree seg(
init, [](Mat& a, Mat& b) { return a * b; }, mkp(_Mat::I(64), 0ull));
rep(_, Q) {
int cmd;
rd(cmd);
if (cmd == 0) {
int l, r;
rd(l, r);
--l;
vi ps = seg.query(l, r);
u64 a;
rd(a);
each(i, ps) {
Mat& m = seg.seg[i];
a = (a * m.first) ^ m.second;
}
wtn(a);
} else {
int l;
rd(l);
--l;
seg.update(l, gen());
}
}
trc2(t());
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3824kb
input:
3 5 1 1 4 0 0 51966 1 60 0 0 0 1 0 0 16 15 0 1 1 771 0 2 2 32368 0 3 3 0 1 2 2 0 0 15 61 1 4095 46681 0 1 3 2023
output:
64206 2023 31 1112
result:
ok 4 tokens
Test #2:
score: 0
Accepted
time: 1ms
memory: 3804kb
input:
9 9 3 32 9 0 17785061119123981789 33 0 10890571864137198682 42 0 9437574736788763477 34 0 5239651887868507470 55 0 14741743279679654187 27 1 1444116632918569317 38 1 5740886562180922636 1 1 8113356142324084796 3 0 10955266306442425904 60 0 16421026339459788005 53 0 1595107134632608917 48 1 923204972...
output:
9487331362121050549 3906661590723083106 15757672015979182109 4975471776251039345 11503109206538591140 3763610618439604410
result:
ok 6 tokens
Test #3:
score: 0
Accepted
time: 6ms
memory: 3996kb
input:
1 20000 400 32 13 0 1721926083061553294 52 1 8951352260297008058 6 0 3180917732545757991 63 1 14978562500072226750 50 1 7331113732303115313 59 0 688182721924779475 12 0 16291922173168822489 61 0 16018198440613086698 8 0 12494084957448674305 7 0 2834422858291562646 42 1 10354539547309738529 28 0 2541...
output:
11827781865759498816 7454610526276185721 9581050724293785387 2177163806257271094 14004004964877510141 18073834598135159471 16966489063087641088 12289032565388413023 17823140805867698239 18104549908461644670 15570008264282957124 12400954982104000299 9842549278742638708 16535034933613060362 1561642006...
result:
ok 19600 tokens
Test #4:
score: 0
Accepted
time: 76ms
memory: 4168kb
input:
500 20000 400 32 3 0 9869926173615303101 39 1 11114680792832491178 54 1 3380955246053990760 31 0 16868042247314276464 26 0 5814925615581342395 30 1 1114053898154397400 46 1 9215698002668459992 38 1 12938485987410997250 58 0 8030873196223549640 0 0 16055471402053138912 47 1 16568729207788187629 63 0 ...
output:
9119093329811149961 16901643057538871933 17161855998497876349 3964234071281411558 13588188063229334268 15557968976322375381 4612345875926431452 9507168112801039022 9504318642653891468 217407202160767706 12982350345598971306 17957502630817476223 6353877977318728572 15552768639781831485 16778108770682...
result:
ok 19600 tokens
Test #5:
score: 0
Accepted
time: 174ms
memory: 10132kb
input:
4000 20000 400 35 33 0 18435679328748604368 55 1 10851974578636476759 1 0 11332084644969697080 13 0 4243547822701774011 19 0 18197854269436975495 32 0 10133703694198056054 6 0 12655387670867301210 36 0 1246525872821095171 51 1 812047498663608637 4 0 9797423115860097390 7 1 12105773148377740641 17 0 ...
output:
11875257514484243925 3443357416933857062 16160011677622853538 1582145987019406393 15019762274690743371 3128972641411454448 10632018957963074870 2420532366876270818 16130728863118353230 15834956073901517645 18404809296474853851 10982435108266120760 16463778300806795274 11990886156320593058 1145171640...
result:
ok 19600 tokens
Test #6:
score: 0
Accepted
time: 473ms
memory: 47760kb
input:
20000 20000 0 34 47 1 3147866938814566873 50 0 8051884074279018250 4 0 11476150812073861567 54 0 3931985566612211642 60 1 9226417006726638292 49 0 2435425653073267226 33 1 5976119177961927073 40 1 3169532703977184656 2 1 17206894689684881943 37 0 2316971949450684490 7 1 7087775905790436416 18 1 7557...
output:
8031710763259664674 10015579400510819759 9509776159199873854 252965904282343862 17471441301398284397 6167329408972068582 11581702001320217920 13373488743211628824 2094753313448112669 15503010008451014749 384500896248723935 10501371892025480221 8907735695899875922 14479597201387282763 164403466075406...
result:
ok 20000 tokens
Test #7:
score: 0
Accepted
time: 475ms
memory: 47440kb
input:
20000 20000 20 28 31 1 17220760822712602145 12 1 10079395927654210001 40 0 10440736241216457314 20 1 14759495678166748212 55 1 8734257463550073646 60 0 543206106562221008 29 1 5402811237936853387 52 1 3884345269948184760 22 0 7873959847686200341 15 1 18396630536251250330 25 0 18230407003294263406 14...
output:
6531775129959975384 6212576544894999781 4191848452578359691 2769536540387251859 15526337103142577854 14948743844803225542 15235110724610778185 9004056994453026335 1028305510694260706 13496210650896843548 13961471020487846633 1864980030930734934 15243868808579626755 10451839696548403150 1178402342726...
result:
ok 19980 tokens
Test #8:
score: 0
Accepted
time: 558ms
memory: 47720kb
input:
20000 20000 400 41 15 1 10590708978689078436 33 0 17448869030270552656 37 1 16782453056389226553 2 1 18313039076194285622 53 1 7894371271572806769 60 1 14563226108042670650 56 0 12694119759311053234 12 1 969626878679760122 28 1 8906626075909573228 20 1 11632670066953088447 50 0 13097960756795495550 ...
output:
7425391644666486729 17533666397961516801 16986235811843827275 1784742314571007240 13192305384063626572 12739810377012216000 1179361465141596122 7698346401428161235 6903188112913915716 5380404381348976227 16126105607866972637 12798978320947566556 11234201442491665890 16073897288956866956 151328474491...
result:
ok 19600 tokens
Test #9:
score: 0
Accepted
time: 558ms
memory: 47472kb
input:
20000 20000 400 33 39 1 17067623245236507261 27 1 7041428814521205530 50 1 10823426118594256003 28 1 7163716190894912799 12 1 4080987667516350158 63 0 17082717673883070565 17 0 11310350135715835231 51 1 12855244004029414317 38 0 9814237273168847221 57 1 3708701962235763971 37 0 10158992933772396697 ...
output:
6864973236048047224 18318008901523164537 13500746067907696382 13161681605750995854 3452654261090196316 14847903013724109682 7301818645657195470 15784097910646013208 6555334273152043996 6337001136120562705 7065460407919669838 17502323856909932125 12099828260978288865 17244785354672463736 159661862214...
result:
ok 19600 tokens
Test #10:
score: 0
Accepted
time: 454ms
memory: 47556kb
input:
20000 20000 0 37 46 0 4806156443854081866 29 0 6910842714881233745 61 0 9379366064412681113 32 1 718568893402460472 45 0 1234243654449881049 16 0 9791590151480029686 24 1 801156398497308107 20 1 1638149966892153162 3 1 483739892768149714 56 1 3070030763953269690 38 1 11944075913457601606 6 1 8068547...
output:
17693343388614420171 11014279187501816246 7111154205373939902 5948421254644613369 5776121468606637836 16944170640450069348 8394185836099893155 11947149219582604015 4508739183749291929 11471060687727420580 3924131475517252887 1743542114579130111 14487529569441993654 8062193838630657668 18359613799309...
result:
ok 20000 tokens
Test #11:
score: 0
Accepted
time: 543ms
memory: 47696kb
input:
20000 20000 400 31 63 1 14360706182574306953 17 0 4643864577315796645 48 0 11264878137122897405 18 1 14150130986659920202 25 1 15979000250901513596 49 0 16241841209566112679 37 1 16762565151400121253 14 1 7376170230332808198 26 1 10868082441744868454 27 1 6949308347230687639 44 1 4116452321258930556...
output:
4493451016206578040 14208826853413050113 15020158700931574670 16337826900074673926 5403566933376608394 8871156492968482557 8911109963819675601 6213157285507240354 17190717170193641517 15578273901773478953 1369444627312020075 11786462107951385516 17634527799358234224 18347358352139830828 145863906383...
result:
ok 19600 tokens
Test #12:
score: 0
Accepted
time: 472ms
memory: 47516kb
input:
20000 20000 0 25 16 0 2668205375195949736 34 0 2748287585311204102 37 1 4531486636255948251 24 0 14410309392802368907 52 1 851885811168352867 47 1 15887239727531457455 42 0 8819527325570258215 44 0 16146066124743535517 46 1 1041563265194349313 11 1 13140073107604291185 0 1 16670532562293262804 56 1 ...
output:
5924012028700061898 4718073419648080016 13993322115865028469 82790239609178342 887419913876033685 15321668567642867070 8962935781265467660 1552533755174937777 16683793257623944188 6900756788022393102 10981237528745871227 5789630421744738481 9056874037200094100 15328577526113324947 627381852022728881...
result:
ok 20000 tokens
Test #13:
score: 0
Accepted
time: 556ms
memory: 47496kb
input:
20000 20000 400 29 26 0 4544814232153615705 62 0 13471881549916225637 53 0 595040484360290534 17 1 11949377632182068615 20 0 9311349995021422035 60 0 816595034603135343 48 0 10654197142859256352 24 0 4772788762907504538 54 0 15584542718632709463 19 1 2151387765439259665 41 1 15099291996319444694 40 ...
output:
1423325416659742802 17371677980372930727 3681232738426467215 13266462173687709877 12639633063779823269 1946619485256865431 12989302207328517036 14138867084917472527 18218337902938347758 3372796243270362661 673871038008779791 9077527952253879051 7326631285358366273 2710349874806590369 172928358344422...
result:
ok 19600 tokens
Test #14:
score: 0
Accepted
time: 557ms
memory: 47644kb
input:
20000 20000 400 24 38 1 3460586314685566112 26 0 4188084273268315686 61 0 1227557406397452582 25 1 5747999803901747386 41 1 1907261769878407698 27 0 16752772615002344376 34 0 17112817990633067537 60 0 9291256903378353577 45 0 7510343555807629464 13 0 18007693761515887577 9 1 17317953029923040761 4 0...
output:
13100999329968562920 15516017614708332089 5382331705592343945 357522576585990254 16311520569626827168 6758986479859611544 12732461424037837989 8966988217248420501 10391550114259677068 4660694210255306341 7237506373169380284 13657244350225493605 6916780657676036471 10881113620462446827 16277857127600...
result:
ok 19600 tokens
Test #15:
score: 0
Accepted
time: 754ms
memory: 47724kb
input:
20000 20000 400 60 25 1 2719522369398288789 40 1 9400902170286318935 6 1 9521944178235051324 43 0 11768204916287391421 22 0 12726538799306592512 47 1 15759776307217345226 17 1 15438840904724459733 13 0 17863856648581711698 29 1 4032777103500438360 10 0 683992519125165540 26 1 15461667428831774672 14...
output:
412280358023687627 14769812881817125733 18318455003071307239 6658808483284331159 6130439376668456888 1492308137069243960 5853920885317257980 12553163529022332915 7520793755811132601 13993258994649409340 13568418050081351467 12309096149487021368 17899306611786296579 2598853739059100346 14630776750608...
result:
ok 19600 tokens
Test #16:
score: 0
Accepted
time: 751ms
memory: 47584kb
input:
20000 20000 400 58 17 0 7751036624596546188 29 0 17432650278695392920 63 0 4389503693497138241 24 0 11063030485327807810 45 1 18240337466752243882 59 1 17804018980843534887 60 1 5872699360277748939 21 1 10429471649278268372 27 0 16762274761588446397 54 0 6030940442592696599 19 1 13270942932118095691...
output:
17867517807501868664 7775943633465469655 1824462793515136478 12630456144448858727 16944355600951673184 14837233611662521712 13878709289450326681 13750017221938869139 11379793111096427897 15527971528797740116 5872004578520784281 11280146030218952435 5218412287620909707 15541801824852151484 5650476389...
result:
ok 19600 tokens
Test #17:
score: 0
Accepted
time: 752ms
memory: 47500kb
input:
20000 20000 400 60 22 0 12707603241789460389 46 0 15086313545825117890 33 0 909121147706895901 59 1 6114670732197551336 41 0 3090389396605293219 63 0 6608018621123394175 38 1 11836608073091750746 14 1 4878457553941336535 5 0 6024711164477768229 25 1 67199414342206654 24 0 1139176812912408779 16 0 12...
output:
11101670153251608253 675780991220106254 15866623643054791619 16323951405331282505 9135544362908319645 7642151295897109981 12351493946367393308 1935066719605622920 7518368202469961257 11600515247827283279 15933103715396571729 13453007077105135208 14727385649041622999 123215011875209372 76221879547507...
result:
ok 19600 tokens
Test #18:
score: 0
Accepted
time: 751ms
memory: 47960kb
input:
20000 20000 400 57 0 1 16995927798044259033 30 1 4411529108320693455 35 1 14740826024996968953 32 1 14741500464787789772 5 1 13621297821910096766 47 1 1805557230674866983 26 0 1852515218899978614 37 1 14167448543730803554 15 0 8207408801869448845 7 0 2253659179521891807 61 1 1303777112793499927 1 1 ...
output:
14640221015002441272 8108797686286238378 619977752116985977 17860455208859938460 2219391733727955287 17098130710123326231 4643402762732727695 1576822124091279449 2112594951252396904 11012866398108256228 3100264803360198048 1520325785935749501 17234063909328734373 2294517371241459639 6577965043160831...
result:
ok 19600 tokens
Test #19:
score: 0
Accepted
time: 752ms
memory: 47572kb
input:
20000 20000 400 60 23 1 12967402093469929995 29 0 12482782180176810891 47 1 17290909632526370536 5 0 17372530581982291607 62 1 13987764289696466564 41 1 8421162609706963610 53 0 18089202028338115523 10 0 1312033850971950221 2 0 3337291528457528731 18 1 17751876270582349954 32 0 13359684730271699557 ...
output:
8219634040467306280 7488593258162917054 3429645423088159837 13823280993584110417 4972072459402131521 8504404100763034378 5815021261728531941 5670841473953742448 6721982245071008063 8353993923949852878 4277531481899017404 5173775653727609205 4061296038432070306 11044359884601198871 272114767395246212...
result:
ok 19600 tokens
Test #20:
score: 0
Accepted
time: 751ms
memory: 47584kb
input:
20000 20000 400 56 3 0 14386867255986651070 17 1 5876678743420202175 24 0 2472800002233203764 40 0 3974575279492546522 5 1 10323896862538344788 31 0 15302550669828857297 10 0 8188514003112427229 28 0 9350793473465284653 34 1 1051624389221640716 56 1 12992224832956122800 0 1 12521917684359350214 33 1...
output:
16023098103166573969 5488057777512126106 2364974952009032490 6867156023979603961 13898097818261510588 3896697852262723116 13075557814956081246 550932186457628322 1501306951093128873 12801415593941350129 12431218450278358855 8287212554931924015 7521994383511852994 7781645210267880075 1658905057583045...
result:
ok 19600 tokens
Extra Test:
score: 0
Extra Test Passed