QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#349493 | #8339. Rooted Tree | ucup-team008# | AC ✓ | 823ms | 3680kb | C++17 | 7.8kb | 2024-03-10 02:26:38 | 2024-03-10 02:26:38 |
Judging History
answer
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <vector>
using namespace std;
// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
typedef vector<int> vi;
#define f first
#define s second
#define derr if(0) cerr
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << flush;
// END NO SAD
template<class Fun>
class y_combinator_result {
Fun fun_;
public:
template<class T>
explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}
template<class ...Args>
decltype(auto) operator()(Args &&...args) {
return fun_(std::ref(*this), std::forward<Args>(args)...);
}
};
template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
template<class T>
bool updmin(T& a, T b) {
if(b < a) {
a = b;
return true;
}
return false;
}
template<class T>
bool updmax(T& a, T b) {
if(b > a) {
a = b;
return true;
}
return false;
}
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<vector<ll>> matrix;
struct barrett_reduction {
unsigned mod;
uint64_t div;
barrett_reduction(unsigned m) : mod(m), div(-1LLU / m) {}
unsigned operator()(uint64_t a) const {
#ifdef __SIZEOF_INT128__
uint64_t q = uint64_t(__uint128_t(div) * a >> 64);
uint64_t r = a - q * mod;
return unsigned(r < mod ? r : r - mod);
#endif
return unsigned(a % mod);
}
};
template<const int &MOD, const barrett_reduction &barrett>
struct _b_int {
int val;
_b_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_b_int(uint64_t v) {
if (v >= uint64_t(MOD)) v %= MOD;
val = int(v);
}
_b_int(int v) : _b_int(int64_t(v)) {}
_b_int(unsigned v) : _b_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
// https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_b_int& operator+=(const _b_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_b_int& operator-=(const _b_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x) {
#if !defined(_WIN32) || defined(_WIN64)
return barrett(x);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * MOD for this to work, so that x / MOD fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (MOD));
return rem;
}
_b_int& operator*=(const _b_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_b_int& operator/=(const _b_int &other) {
return *this *= other.inv();
}
friend _b_int operator+(const _b_int &a, const _b_int &b) { return _b_int(a) += b; }
friend _b_int operator-(const _b_int &a, const _b_int &b) { return _b_int(a) -= b; }
friend _b_int operator*(const _b_int &a, const _b_int &b) { return _b_int(a) *= b; }
friend _b_int operator/(const _b_int &a, const _b_int &b) { return _b_int(a) /= b; }
_b_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_b_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_b_int operator++(int) { _b_int before = *this; ++*this; return before; }
_b_int operator--(int) { _b_int before = *this; --*this; return before; }
_b_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _b_int &a, const _b_int &b) { return a.val == b.val; }
friend bool operator!=(const _b_int &a, const _b_int &b) { return a.val != b.val; }
friend bool operator<(const _b_int &a, const _b_int &b) { return a.val < b.val; }
friend bool operator>(const _b_int &a, const _b_int &b) { return a.val > b.val; }
friend bool operator<=(const _b_int &a, const _b_int &b) { return a.val <= b.val; }
friend bool operator>=(const _b_int &a, const _b_int &b) { return a.val >= b.val; }
_b_int inv() const {
return inv_mod(val);
}
_b_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_b_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
p >>= 1;
if (p > 0)
a *= a;
}
return result;
}
friend ostream& operator<<(ostream &os, const _b_int &m) {
return os << m.val;
}
friend istream& operator>>(istream &is, _b_int &m) {
int64_t x;
is >> x;
m = x;
return is;
}
};
int MOD = int(1e9) + 9;
barrett_reduction barrett(MOD);
using mnum = _b_int<MOD, barrett>;
void solve() {
int m, k;
cin >> m >> k;
mnum ret = 0;
for(int i = 1; i <= k; i++) {
mnum inner = (m*k)+1-i;
inner /= (m-1)*i+1;
ret += inner;
}
cout << (ret*m) << "\n";
}
// what would chika do
// are there edge cases (N=1?)
// are array sizes proper (scaled by proper constant, for example 2* for koosaga tree)
// integer overflow?
// DS reset properly between test cases
// are you doing geometry in floating points
// are you not using modint when you should
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3676kb
input:
6 2
output:
18
result:
ok 1 number(s): "18"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
2 6
output:
600000038
result:
ok 1 number(s): "600000038"
Test #3:
score: 0
Accepted
time: 45ms
memory: 3556kb
input:
83 613210
output:
424200026
result:
ok 1 number(s): "424200026"
Test #4:
score: 0
Accepted
time: 529ms
memory: 3592kb
input:
48 6713156
output:
198541581
result:
ok 1 number(s): "198541581"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3532kb
input:
1 111
output:
6216
result:
ok 1 number(s): "6216"
Test #6:
score: 0
Accepted
time: 563ms
memory: 3664kb
input:
28 7304152
output:
457266679
result:
ok 1 number(s): "457266679"
Test #7:
score: 0
Accepted
time: 313ms
memory: 3556kb
input:
38 4101162
output:
232117382
result:
ok 1 number(s): "232117382"
Test #8:
score: 0
Accepted
time: 793ms
memory: 3620kb
input:
51 9921154
output:
340670552
result:
ok 1 number(s): "340670552"
Test #9:
score: 0
Accepted
time: 137ms
memory: 3588kb
input:
79 1801157
output:
620550406
result:
ok 1 number(s): "620550406"
Test #10:
score: 0
Accepted
time: 406ms
memory: 3664kb
input:
22 5417157
output:
457449071
result:
ok 1 number(s): "457449071"
Test #11:
score: 0
Accepted
time: 237ms
memory: 3600kb
input:
25 3210162
output:
36368303
result:
ok 1 number(s): "36368303"
Test #12:
score: 0
Accepted
time: 225ms
memory: 3680kb
input:
67 2919160
output:
935195555
result:
ok 1 number(s): "935195555"
Test #13:
score: 0
Accepted
time: 703ms
memory: 3672kb
input:
77 8613163
output:
482832472
result:
ok 1 number(s): "482832472"
Test #14:
score: 0
Accepted
time: 823ms
memory: 3588kb
input:
90 10000000
output:
275581651
result:
ok 1 number(s): "275581651"
Test #15:
score: 0
Accepted
time: 821ms
memory: 3528kb
input:
99 9999999
output:
126087169
result:
ok 1 number(s): "126087169"
Test #16:
score: 0
Accepted
time: 821ms
memory: 3560kb
input:
100 10000000
output:
451590067
result:
ok 1 number(s): "451590067"
Extra Test:
score: 0
Extra Test Passed