QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#349486#8337. Counter Reset Problemucup-team987#AC ✓97ms3840kbC++2316.2kb2024-03-10 02:24:472024-03-10 02:24:49

Judging History

你现在查看的是最新测评结果

  • [2024-03-10 02:24:49]
  • 评测
  • 测评结果:AC
  • 用时:97ms
  • 内存:3840kb
  • [2024-03-10 02:24:47]
  • 提交

answer

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

namespace {

using mint = atcoder::static_modint<1'000'000'009>;

mint solve_lds(int n, const std::string& R) {
  std::array<std::array<int, 10>, 512> pre{};
  for (const int mask : rep(512)) {
    for (const int d : rep(10)) {
      pre[mask][d] = mask;
      if (d == 0) {
        continue;
      }
      int i = d - 1;
      while (0 <= i && ~mask >> i & 1) {
        --i;
      }
      if (i != -1) {
        assert(pre[mask][d] >> i & 1);
        pre[mask][d] &= ~(1 << i);
      }
      pre[mask][d] |= 1 << (d - 1);
    }
  }

  std::array<std::array<mint, 512>, 2> f{};

  f[1][0] = 1;

  for (const int i : rep(n)) {
    const int Ri = R[i] - '0';

    std::array<std::array<mint, 512>, 2> nf{};
    for (const int eq : rep(2)) {
      for (const int mask : rep(512)) {
        for (const int d : rep(10)) {
          if (eq && Ri < d) {
            break;
          }
          const int new_eq = eq && d == Ri;
          const int new_mask = pre[mask][d];
          nf[new_eq][new_mask] += f[eq][mask];
        }
      }
    }

    f = nf;
  }

  mint ret = 0;
  for (const int eq : rep(2)) {
    for (const int mask : rep(512)) {
      ret += std::__popcount(mask) * f[eq][mask];
    }
  }

  return ret;
}

mint solve_head(int n, const std::string& R) {
  const int R0 = R[0] - '0';

  mint ret = 0;
  for (const int i : rep(1, n)) {
    ret *= 10;
    ret += R[i] - '0';
  }
  ++ret;

  ret *= R0;

  for (const int d0 : rep(R0)) {
    ret += mint(10).pow(n - 1) * d0;
  }

  return ret;
}

mint solve(int n, const std::string& R) { return solve_lds(n, R) * 10 - solve_head(n, R); }

void solve() {
  int n;
  scan(n);
  std::string L, R;
  scan(L, R);

  mint ans = solve(n, R);

  int i = n - 1;
  while (0 <= i && L[i] == '0') {
    L[i] = '9';
    --i;
  }

  if (i != -1) {
    --L[i];
    ans -= solve(n, L);
  }

  print(ans);
}

}  // namespace

int main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  std::cout << std::setprecision(DBL_DECIMAL_DIG);

  solve();
}

#else  // __INCLUDE_LEVEL__

#include <bits/stdc++.h>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0) x += m;
  return x;
}

struct barrett {
  unsigned int _m;
  unsigned long long im;

  explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

  unsigned int umod() const { return _m; }

  unsigned int mul(unsigned int a, unsigned int b) const {
    unsigned long long z = a;
    z *= b;
    unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
    unsigned long long y = x * _m;
    return (unsigned int)(z - y + (z < y ? _m : 0));
  }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}

constexpr bool is_prime_constexpr(int n) {
  if (n <= 1) return false;
  if (n == 2 || n == 7 || n == 61) return true;
  if (n % 2 == 0) return false;
  long long d = n - 1;
  while (d % 2 == 0) d /= 2;
  constexpr long long bases[3] = {2, 7, 61};
  for (long long a : bases) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0) return {b, 0};

  long long s = b, t = a;
  long long m0 = 0, m1 = 1;

  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u;

    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  if (m0 < 0) m0 += b / s;
  return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
  if (m == 2) return 1;
  if (m == 167772161) return 3;
  if (m == 469762049) return 3;
  if (m == 754974721) return 11;
  if (m == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m,
                                      unsigned long long a, unsigned long long b) {
  unsigned long long ans = 0;
  while (true) {
    if (a >= m) {
      ans += n * (n - 1) / 2 * (a / m);
      a %= m;
    }
    if (b >= m) {
      ans += n * (b / m);
      b %= m;
    }

    unsigned long long y_max = a * n + b;
    if (y_max < m) break;
    n = (unsigned long long)(y_max / m);
    b = (unsigned long long)(y_max % m);
    std::swap(m, a);
  }
  return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
                                                       std::is_same<T, __int128>::value,
                                                   std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                                         std::is_same<T, unsigned __int128>::value,
                                                     std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
  using mint = static_modint;

 public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  static_modint(T v) {
    _v = (unsigned int)(v % umod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }

  friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

 private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

 public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0) x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    _v = (unsigned int)(v % mod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }

  friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

 private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

template <class T, class U = T>
bool chmin(T& x, U&& y) {
  return y < x && (x = std::forward<U>(y), true);
}

template <class T, class U = T>
bool chmax(T& x, U&& y) {
  return x < y && (x = std::forward<U>(y), true);
}

template <std::signed_integral T = int>
T inf() {
  T ret;
  std::memset(&ret, 0x3f, sizeof(ret));
  return ret;
}

template <std::floating_point T>
T inf() {
  return std::numeric_limits<T>::infinity();
}

template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;

template <class T>
concept Tuple = std::__is_tuple_like<T>::value && !Range<T>;

namespace std {

istream& operator>>(istream& is, Range auto&& r) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

istream& operator>>(istream& is, Tuple auto&& t) {
  return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}

ostream& operator<<(ostream& os, Range auto&& r) {
  for (string_view sep = ""; auto&& e : r) {
    os << exchange(sep, " ") << e;
  }
  return os;
}

ostream& operator<<(ostream& os, Tuple auto&& t) {
  const auto f = [&](auto&... xs) -> ostream& {
    [[maybe_unused]] string_view sep = "";
    ((os << exchange(sep, " ") << xs), ...);
    return os;
  };
  return apply(f, t);
}

template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
  int v;
  is >> v;
  x = T::raw(v);
  return is;
}

template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
  return os << x.val();
}

}  // namespace std

void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }

template <class F>
class fix {
 public:
  explicit fix(F f) : f_(std::move(f)) {}

  decltype(auto) operator()(auto&&... xs) const {
    return f_(std::ref(*this), std::forward<decltype(xs)>(xs)...);
  }

 private:
  F f_;
};

inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }

namespace ranges = std::ranges;
namespace views = std::views;

using i64 = std::int64_t;

#endif  // __INCLUDE_LEVEL__

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3596kb

input:

2
19 23

output:

51

result:

ok 1 number(s): "51"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3592kb

input:

6
100084 518118

output:

9159739

result:

ok 1 number(s): "9159739"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3772kb

input:

12
040139021316 234700825190

output:

771011551

result:

ok 1 number(s): "771011551"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3608kb

input:

1
5 6

output:

9

result:

ok 1 number(s): "9"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3804kb

input:

2
06 72

output:

609

result:

ok 1 number(s): "609"

Test #6:

score: 0
Accepted
time: 1ms
memory: 3540kb

input:

3
418 639

output:

2912

result:

ok 1 number(s): "2912"

Test #7:

score: 0
Accepted
time: 92ms
memory: 3632kb

input:

5000
0517031462295902016787205636287842713710486158285091634061538907131690102542613263904109051429895599547551249682345434244517372300211330243052548402051817254239088411128320032011447373157210750522722463984933692575118884942425236057310901139962840332684448050855646476051878413350560455871387882...

output:

107583434

result:

ok 1 number(s): "107583434"

Test #8:

score: 0
Accepted
time: 96ms
memory: 3628kb

input:

5000
2839631722409885676641854449409094340492285620998199901290315528351589154393629439187822315178094894928108915180727622985054953310653613329475433266861767377091508110388139487587162480394472451041742086595826537286229012805321959193382957731290351060584443229684181235109638118508206073343246746...

output:

675394398

result:

ok 1 number(s): "675394398"

Test #9:

score: 0
Accepted
time: 95ms
memory: 3564kb

input:

5000
0121086815228520611727091239718315691985426539178955693257347642954702438161323478758508490896602335048895013843711247876462745921412007803120100676220049634783076688779134708737789972863426435630047856085762842025741483042162463573248808646044510524282002015852558702184741741663627502716091539...

output:

578074633

result:

ok 1 number(s): "578074633"

Test #10:

score: 0
Accepted
time: 96ms
memory: 3840kb

input:

5000
4009315923866078525437170431271052539467314353326632440452295409898108927334934001515186676883568587509019024813648111170281871732854866326020722523420074725860024843129825137935119924032162976610499681775742229100481059217175250566980703955103400572138763397380102014106688956905053311588400020...

output:

819323161

result:

ok 1 number(s): "819323161"

Test #11:

score: 0
Accepted
time: 48ms
memory: 3564kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

603082563

result:

ok 1 number(s): "603082563"

Test #12:

score: 0
Accepted
time: 96ms
memory: 3560kb

input:

5000
0000000000633885819366504765094216298281960115914830941309836432136467240201372806102560453534308348622092992247290436462357300397071633074308793521958159789664211849487860185596546426031984309106487856333298764102131430876495841906089018423483214628974388565112953850655936525351241150423557902...

output:

932985830

result:

ok 1 number(s): "932985830"

Test #13:

score: 0
Accepted
time: 96ms
memory: 3560kb

input:

5000
0000000000650071814576152799371217256711135670967833166238159122753757108206475870392502604983652311016561019624401935292136522985447486826468820130245419622704571928465636054879957833368768017917014412258366637135806195430779375102341403097313114652657311053858679927415807978179707936045164697...

output:

272575829

result:

ok 1 number(s): "272575829"

Test #14:

score: 0
Accepted
time: 95ms
memory: 3604kb

input:

5000
0000000000657328094229913746099323221146491408592219130181502886161406660277702363829799840322984053200487383170118175993742015582187072728949691015559424378545103435137870775283813213496909942045139231518000704584636857968337740896332218427286839853901635635205631771246231118877718651555449476...

output:

794251626

result:

ok 1 number(s): "794251626"

Test #15:

score: 0
Accepted
time: 89ms
memory: 3624kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

249826051

result:

ok 1 number(s): "249826051"

Test #16:

score: 0
Accepted
time: 90ms
memory: 3620kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

877173017

result:

ok 1 number(s): "877173017"

Test #17:

score: 0
Accepted
time: 92ms
memory: 3500kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

151485979

result:

ok 1 number(s): "151485979"

Test #18:

score: 0
Accepted
time: 95ms
memory: 3824kb

input:

5000
0159014801946206696258203734914898037641394210297261730549338421564727821732889635369991666567782236274462438080517568850617352494745082823560909208313152733628396054053172422625874823061159544738915513215515633519036492102915591743629184750409504215140627903979481678277623315334259446755105828...

output:

721368738

result:

ok 1 number(s): "721368738"

Test #19:

score: 0
Accepted
time: 96ms
memory: 3604kb

input:

5000
1593096611929089320399735515670839445317319641521540547482273258869976707444342997517499850977225584459583734048472878376916290891193430156881347098295345589049871574695262843296709640049484336491756355117553445542978365925369583583406406734326950373574468989639441003537832172772375589737899071...

output:

938487418

result:

ok 1 number(s): "938487418"

Test #20:

score: 0
Accepted
time: 95ms
memory: 3792kb

input:

5000
1942754790423610065924881906928119381391132828624720869957031069051460107457618922368312221824960963868132141390226651557497490792608519699575355021753486816233381998899114193162905677398416103685843594379329937984889028183716216739319144146889113025558315492727143533792499692123674201374872204...

output:

723492844

result:

ok 1 number(s): "723492844"

Test #21:

score: 0
Accepted
time: 97ms
memory: 3612kb

input:

5000
4062002096644487673020263989686288898129263292181828632789920013217757414472684149988936679623592326524449425327527672207934691459025745820923996124060064518639311904886395009369861933306193619424323629802988069193226260879633708828283152348279888974862721493316338548452978605219663779103239012...

output:

238281829

result:

ok 1 number(s): "238281829"

Test #22:

score: 0
Accepted
time: 95ms
memory: 3636kb

input:

5000
6316405933251299737337372498948127698855361795106851122342961878511099460284477800021689398773624710796531710111934536692264758409336968822534138067510480682327132829787521086380502223411574189720853737018253702539000736954530096098855210480774721647243160303878286632142888618049567476390480811...

output:

438115612

result:

ok 1 number(s): "438115612"

Test #23:

score: 0
Accepted
time: 96ms
memory: 3612kb

input:

5000
4312995075485686062543180629030314065218422802018901116305311949720089333627550862972827086943311274559763137206551659057830635552994046725440486537460417228963181395186626882241528751346159385275967489215558848690842325538312571185487608780842174973345018125820224444022865526286898846914681241...

output:

414266160

result:

ok 1 number(s): "414266160"

Test #24:

score: 0
Accepted
time: 92ms
memory: 3552kb

input:

5000
0258086533802944384387156598490812537122764239806464778492912263251810255189880663895709905649979907456754907239502806015536719760934923039556119131886838490466915234652947639266720467416389230731315037158937990393477937813832384167299260206768010113827843370432177823204051802021354476856735105...

output:

64847676

result:

ok 1 number(s): "64847676"

Test #25:

score: 0
Accepted
time: 97ms
memory: 3628kb

input:

5000
1060908140283541013245888192600010631685552708456164292614908505986842197764899377183662618610397275316175988006855369063828738809624059980852978342235894957407016210764697356445323759567892038560642666695593294909378068235791186540212051512547793737326942353251922108593809646186717444069399194...

output:

46089973

result:

ok 1 number(s): "46089973"

Test #26:

score: 0
Accepted
time: 96ms
memory: 3536kb

input:

5000
4167413337383512335342446844301295061283297832828337586399036812965628809584309280240335156549007875265018403232860390865650403559828858521226576098324688739416592074500021123122165578438715383733724065265859724840752630774162037584065233385787338015652858265386847420952773768786522984341856441...

output:

289963358

result:

ok 1 number(s): "289963358"

Test #27:

score: 0
Accepted
time: 96ms
memory: 3544kb

input:

5000
0016333155368124738088870770938980478519511839121409548927061239607054420424955716374905253395433974120004555646757520979538059659364833035441642423982778149708821441373452828856302141786564332166685062999047362082796733736904461408000518679191248454746816423311171496595881384512371985551985957...

output:

831498184

result:

ok 1 number(s): "831498184"

Test #28:

score: 0
Accepted
time: 95ms
memory: 3484kb

input:

5000
5092536296551794251043181638143747695055047667638655983429584258891712588224325674545229512946356577078967350285969472283180319383912962093190696463627527554628698850690973966211757510848419627816389188773320206947068778989020619318534488026535209398188789706361479060680484488911824233166170381...

output:

232548867

result:

ok 1 number(s): "232548867"

Test #29:

score: 0
Accepted
time: 92ms
memory: 3628kb

input:

5000
4250650491835895211380154911374118880219475610640757916147240362500104880620808530762344123980888292339437259581375290967595195746830677913147601662442399330928582487119875486342332667822985842301686413861142987548286348240942361774457164440066458920375413112071161055538460779044102959044496383...

output:

600488208

result:

ok 1 number(s): "600488208"

Test #30:

score: 0
Accepted
time: 95ms
memory: 3544kb

input:

5000
0000000000689078792067237718947428136594821842520489332698476953096081050443004774491088068653978931122890246667731895978262338006130108971352213349525758787905783267776002539885854055677272999660672296183028350453530189660455899343828445282255728924058584245940525190415132437297972695822279109...

output:

887505503

result:

ok 1 number(s): "887505503"

Test #31:

score: 0
Accepted
time: 95ms
memory: 3612kb

input:

5000
0000000000022121271882232360313107852566602611539514301356520582779830156937109065371076190844344608965131323524013303620896649114825312828542093066291828737963114945513196080146852787896344285823817341460491358653892467153045088134419113464433102015939811049514570760600972457269976090211961884...

output:

805027211

result:

ok 1 number(s): "805027211"

Test #32:

score: 0
Accepted
time: 91ms
memory: 3612kb

input:

5000
0000000000655258143985523409468362333040390212372889201638954055429475496420475344646752673292169310979974004259018721019774943143436225056989315666021154606929955509691052479829612484143399029185137961961904224760687081073181164608976833701710469728964824198019477823573078500411122321352408143...

output:

817305775

result:

ok 1 number(s): "817305775"

Test #33:

score: 0
Accepted
time: 95ms
memory: 3824kb

input:

5000
0000000000977853043576694047225399227210086922493669342733496307897953500774477296874716114502271719675269139177397229134428651178783123755665865371468690966481661122800434360623721854165798451817486468010819158274648686004500174373687929590147693675019891633373560050286228396315148221630242509...

output:

121593917

result:

ok 1 number(s): "121593917"

Test #34:

score: 0
Accepted
time: 92ms
memory: 3832kb

input:

5000
0000000000626847933851084471445813197397273635421637799221686455948052808565622535398102619895781412131685881963406264318131334291574165160956974488702833999982128858907022551925464777356511604362143099588141349054262136650241983023241186850500635027127232298038791110103217925320540465429578079...

output:

859770412

result:

ok 1 number(s): "859770412"

Test #35:

score: 0
Accepted
time: 95ms
memory: 3836kb

input:

5000
0000000000304243401410637355744802808733143685926175829233812528213453479871131108446674596961561046013094838367098551485599110034561978793633844518410906928604462778756766355621615924883101772853369939655287209121141140220603092065096713814992898390786602561069584785944502973388918962251742088...

output:

434661827

result:

ok 1 number(s): "434661827"

Test #36:

score: 0
Accepted
time: 95ms
memory: 3560kb

input:

5000
0000000000610523727147227044245934257508656780055358425742794275244952517850507397695762053339751873109506189007606141604459542156822164518307407582575075315832629466662597041565531419208169767059612454647764252183783064923890418860535482770645486496991346322389178352880274131087767972303098836...

output:

644040569

result:

ok 1 number(s): "644040569"

Test #37:

score: 0
Accepted
time: 95ms
memory: 3612kb

input:

5000
0000000000610091852181247077023000832216456399222387763619927598717508681275035226167283412004673572980957980402717453893826112768338773616062330558592109431953330116618467278798291497747305121371714461244238254762216799625177097143463130298124123226787267816764724839697760759349912767621877855...

output:

83534609

result:

ok 1 number(s): "83534609"

Test #38:

score: 0
Accepted
time: 95ms
memory: 3628kb

input:

5000
0000000000242616738203875233236973861419518431941561736955375287532653293772072421845606880661287146368249482401443956018202758259320445109639150994010196038940287579570474599000817155017574393956188924602724346439261731907670111733479014027966309087906395335929715951402141727143437701610426871...

output:

160784993

result:

ok 1 number(s): "160784993"

Test #39:

score: 0
Accepted
time: 0ms
memory: 3548kb

input:

1
0 0

output:

0

result:

ok 1 number(s): "0"

Test #40:

score: 0
Accepted
time: 0ms
memory: 3600kb

input:

2
00 00

output:

0

result:

ok 1 number(s): "0"

Test #41:

score: 0
Accepted
time: 0ms
memory: 3592kb

input:

3
000 000

output:

0

result:

ok 1 number(s): "0"

Test #42:

score: 0
Accepted
time: 0ms
memory: 3540kb

input:

4
0000 0000

output:

0

result:

ok 1 number(s): "0"

Test #43:

score: 0
Accepted
time: 33ms
memory: 3828kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

0

result:

ok 1 number(s): "0"

Test #44:

score: 0
Accepted
time: 89ms
memory: 3836kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

520894423

result:

ok 1 number(s): "520894423"

Test #45:

score: 0
Accepted
time: 91ms
memory: 3624kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

53974188

result:

ok 1 number(s): "53974188"

Test #46:

score: 0
Accepted
time: 97ms
memory: 3500kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

961014394

result:

ok 1 number(s): "961014394"

Test #47:

score: 0
Accepted
time: 91ms
memory: 3560kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

388131615

result:

ok 1 number(s): "388131615"

Test #48:

score: 0
Accepted
time: 89ms
memory: 3560kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

710918164

result:

ok 1 number(s): "710918164"

Test #49:

score: 0
Accepted
time: 90ms
memory: 3544kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

828554030

result:

ok 1 number(s): "828554030"

Test #50:

score: 0
Accepted
time: 91ms
memory: 3504kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

547595944

result:

ok 1 number(s): "547595944"

Test #51:

score: 0
Accepted
time: 89ms
memory: 3636kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

515152604

result:

ok 1 number(s): "515152604"

Test #52:

score: 0
Accepted
time: 92ms
memory: 3632kb

input:

5000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

601070920

result:

ok 1 number(s): "601070920"

Extra Test:

score: 0
Extra Test Passed