QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#349361 | #8335. Fast Hash Transform | ucup-team987# | TL | 3927ms | 15800kb | C++20 | 16.9kb | 2024-03-10 01:23:07 | 2024-03-10 01:23:07 |
Judging History
answer
/**
* date : 2024-03-10 02:22:52
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
namespace std {
template <size_t N>
bool operator<(const bitset<N> &a, const bitset<N> &b) {
int f = (a ^ b)._Find_first();
return f == N ? false : a[f];
}
} // namespace std
template <size_t H_MAX, size_t W_MAX>
struct F2_Matrix {
using Mat = F2_Matrix;
int H, W;
array<bitset<W_MAX>, H_MAX> A;
F2_Matrix(int h = H_MAX, int w = W_MAX) : H(h), W(w) {
assert(0 <= h and h <= (int)H_MAX);
assert(0 <= w and w <= (int)W_MAX);
for (int i = 0; i < (int)H_MAX; i++) A[i].reset();
}
inline bitset<W_MAX> &operator[](int i) { return A[i]; }
inline const bitset<W_MAX> &operator[](int i) const { return A[i]; }
static Mat I(int n) {
Mat a(n, n);
for (int i = 0; i < n; i++) a[i][i] = true;
return a;
}
// (AND, XOR) 半環
// (AND, OR) 半環には operator/ を割り当てた
Mat &operator*=(const Mat &B) {
Mat C(H, B.W);
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (A[i][j]) C[i] ^= B[j];
}
}
swap(A, C.A);
return *this;
}
Mat operator*(const Mat &B) const { return Mat(*this) *= B; }
// (AND, OR) 半環
friend Mat and_or_product(const Mat &A, const Mat &B) {
Mat C(A.H, B.W);
for (int i = 0; i < A.H; i++) {
for (int j = 0; j < A.W; j++) {
if (A[i][j]) C[i] |= B[j];
}
}
return C;
}
// [0, wr) の範囲で掃き出し, rank を返す
int sweep(int wr = -1) {
if (wr == -1) wr = W;
int t = 0;
for (int u = 0; u < wr; u++) {
int piv = -1;
for (int i = t; i < H; i++) {
if (A[i][u]) {
piv = i;
break;
}
}
if (piv == -1) continue;
if (piv != t) swap(A[piv], A[t]);
for (int i = 0; i < H; i++) {
if (i != t && A[i][u]) A[i] ^= A[t];
}
t++;
}
return t;
}
Mat inverse() const {
assert(H == W);
int N = H;
F2_Matrix<H_MAX, W_MAX * 2> c(H, W * 2);
for (int i = 0; i < N; i++) {
c[i][i + N] = 1;
for (int j = 0; j < N; j++) {
c[i][j] = A[i][j];
}
}
int r = c.sweep();
assert(r == N);
Mat b(H, W);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
b[i][j] = c[i][j + N];
}
}
return b;
}
bool operator<(const Mat &rhs) const {
if (H != rhs.H) return H < rhs.H;
if (W != rhs.W) return W < rhs.W;
return A < rhs.A;
}
bool operator==(const Mat &rhs) const {
return H == rhs.H and W == rhs.W and A == rhs.A;
}
friend ostream &operator<<(ostream &os, const Mat &b) {
for (int i = 0; i < b.H; i++) {
os << "[ ";
for (int j = 0; j < b.W; j++) {
os << b[i][j] << ", ";
}
os << "],\n";
}
return os;
}
};
template <typename T, typename F>
struct SegmentTree {
int N;
int size;
vector<T> seg;
const F f;
const T I;
SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}
SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }
SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
init(v.size());
for (int i = 0; i < (int)v.size(); i++) {
seg[i + size] = v[i];
}
build();
}
void init(int _N) {
N = _N;
size = 1;
while (size < N) size <<= 1;
seg.assign(2 * size, I);
}
void set(int k, T x) { seg[k + size] = x; }
void build() {
for (int k = size - 1; k > 0; k--) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void update(int k, T x) {
k += size;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void add(int k, T x) {
k += size;
seg[k] += x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
// query to [a, b)
T query(int a, int b) {
T L = I, R = I;
for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
T &operator[](const int &k) { return seg[k + size]; }
// check(a[l] * ... * a[r-1]) が true となる最大の r
// (右端まですべて true なら N を返す)
template <class C>
int max_right(int l, C check) {
assert(0 <= l && l <= N);
assert(check(I) == true);
if (l == N) return N;
l += size;
T sm = I;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, seg[l]))) {
while (l < size) {
l = (2 * l);
if (check(f(sm, seg[l]))) {
sm = f(sm, seg[l]);
l++;
}
}
return l - size;
}
sm = f(sm, seg[l]);
l++;
} while ((l & -l) != l);
return N;
}
// check(a[l] * ... * a[r-1]) が true となる最小の l
// (左端まで true なら 0 を返す)
template <typename C>
int min_left(int r, C check) {
assert(0 <= r && r <= N);
assert(check(I) == true);
if (r == 0) return 0;
r += size;
T sm = I;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(seg[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (check(f(seg[r], sm))) {
sm = f(seg[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = f(seg[r], sm);
} while ((r & -r) != r);
return 0;
}
};
using namespace Nyaan;
using Mat = F2_Matrix<65, 128>;
Mat gen() {
ini(t);
Mat m(65, 65);
m[64].flip(64);
rep(_, t) {
int s, o;
u64 a;
in(s, o, a);
if (o == 0) {
// OR
rep(i, 64) {
if (gbit(a, i)) {
m[64].flip(i);
} else {
m[(i + 64 - s) & 63].flip(i);
}
}
} else {
// AND
rep(i, 64) {
if (gbit(a, i)) {
m[(i + 64 - s) & 63].flip(i);
} else {
// do nothing
}
}
}
}
{
u64 b;
in(b);
rep(i, 64) {
if (gbit(b, i)) {
m[64].flip(i);
}
}
}
return m;
}
void q() {
inl(N, Q, C);
V<Mat> init(N);
rep(i, N) init[i] = gen();
SegmentTree seg(
init, [](Mat& a, Mat& b) { return a * b; }, Mat::I(65));
rep(_, Q) {
ini(cmd);
if (cmd == 0) {
inl(l, r);
--l;
Mat m = seg.query(l, r);
u64 a;
in(a);
Mat v(1, 65);
v[0].flip(64);
rep(i, 64) if (gbit(a, i)) v[0].flip(i);
Mat w = v * m;
u64 ans = 0;
rep(i, 64) if (w[0][i]) ans += 1uLL << i;
out(ans);
} else {
inl(l);
--l;
seg.update(l, gen());
}
}
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3604kb
input:
3 5 1 1 4 0 0 51966 1 60 0 0 0 1 0 0 16 15 0 1 1 771 0 2 2 32368 0 3 3 0 1 2 2 0 0 15 61 1 4095 46681 0 1 3 2023
output:
64206 2023 31 1112
result:
ok 4 tokens
Test #2:
score: 0
Accepted
time: 1ms
memory: 3600kb
input:
9 9 3 32 9 0 17785061119123981789 33 0 10890571864137198682 42 0 9437574736788763477 34 0 5239651887868507470 55 0 14741743279679654187 27 1 1444116632918569317 38 1 5740886562180922636 1 1 8113356142324084796 3 0 10955266306442425904 60 0 16421026339459788005 53 0 1595107134632608917 48 1 923204972...
output:
9487331362121050549 3906661590723083106 15757672015979182109 4975471776251039345 11503109206538591140 3763610618439604410
result:
ok 6 tokens
Test #3:
score: 0
Accepted
time: 140ms
memory: 3796kb
input:
1 20000 400 32 13 0 1721926083061553294 52 1 8951352260297008058 6 0 3180917732545757991 63 1 14978562500072226750 50 1 7331113732303115313 59 0 688182721924779475 12 0 16291922173168822489 61 0 16018198440613086698 8 0 12494084957448674305 7 0 2834422858291562646 42 1 10354539547309738529 28 0 2541...
output:
11827781865759498816 7454610526276185721 9581050724293785387 2177163806257271094 14004004964877510141 18073834598135159471 16966489063087641088 12289032565388413023 17823140805867698239 18104549908461644670 15570008264282957124 12400954982104000299 9842549278742638708 16535034933613060362 1561642006...
result:
ok 19600 tokens
Test #4:
score: 0
Accepted
time: 2656ms
memory: 4812kb
input:
500 20000 400 32 3 0 9869926173615303101 39 1 11114680792832491178 54 1 3380955246053990760 31 0 16868042247314276464 26 0 5814925615581342395 30 1 1114053898154397400 46 1 9215698002668459992 38 1 12938485987410997250 58 0 8030873196223549640 0 0 16055471402053138912 47 1 16568729207788187629 63 0 ...
output:
9119093329811149961 16901643057538871933 17161855998497876349 3964234071281411558 13588188063229334268 15557968976322375381 4612345875926431452 9507168112801039022 9504318642653891468 217407202160767706 12982350345598971306 17957502630817476223 6353877977318728572 15552768639781831485 16778108770682...
result:
ok 19600 tokens
Test #5:
score: 0
Accepted
time: 3927ms
memory: 15800kb
input:
4000 20000 400 35 33 0 18435679328748604368 55 1 10851974578636476759 1 0 11332084644969697080 13 0 4243547822701774011 19 0 18197854269436975495 32 0 10133703694198056054 6 0 12655387670867301210 36 0 1246525872821095171 51 1 812047498663608637 4 0 9797423115860097390 7 1 12105773148377740641 17 0 ...
output:
11875257514484243925 3443357416933857062 16160011677622853538 1582145987019406393 15019762274690743371 3128972641411454448 10632018957963074870 2420532366876270818 16130728863118353230 15834956073901517645 18404809296474853851 10982435108266120760 16463778300806795274 11990886156320593058 1145171640...
result:
ok 19600 tokens
Test #6:
score: -100
Time Limit Exceeded
input:
20000 20000 0 34 47 1 3147866938814566873 50 0 8051884074279018250 4 0 11476150812073861567 54 0 3931985566612211642 60 1 9226417006726638292 49 0 2435425653073267226 33 1 5976119177961927073 40 1 3169532703977184656 2 1 17206894689684881943 37 0 2316971949450684490 7 1 7087775905790436416 18 1 7557...
output:
8031710763259664674 10015579400510819759 9509776159199873854 252965904282343862 17471441301398284397 6167329408972068582 11581702001320217920 13373488743211628824 2094753313448112669 15503010008451014749 384500896248723935 10501371892025480221 8907735695899875922 14479597201387282763 164403466075406...