QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#349361#8335. Fast Hash Transformucup-team987#TL 3927ms15800kbC++2016.9kb2024-03-10 01:23:072024-03-10 01:23:07

Judging History

你现在查看的是最新测评结果

  • [2024-03-10 01:23:07]
  • 评测
  • 测评结果:TL
  • 用时:3927ms
  • 内存:15800kb
  • [2024-03-10 01:23:07]
  • 提交

answer

/**
 * date   : 2024-03-10 02:22:52
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//



using namespace std;

namespace std {
template <size_t N>
bool operator<(const bitset<N> &a, const bitset<N> &b) {
  int f = (a ^ b)._Find_first();
  return f == N ? false : a[f];
}
}  // namespace std

template <size_t H_MAX, size_t W_MAX>
struct F2_Matrix {
  using Mat = F2_Matrix;

  int H, W;
  array<bitset<W_MAX>, H_MAX> A;
  F2_Matrix(int h = H_MAX, int w = W_MAX) : H(h), W(w) {
    assert(0 <= h and h <= (int)H_MAX);
    assert(0 <= w and w <= (int)W_MAX);
    for (int i = 0; i < (int)H_MAX; i++) A[i].reset();
  }
  inline bitset<W_MAX> &operator[](int i) { return A[i]; }
  inline const bitset<W_MAX> &operator[](int i) const { return A[i]; }

  static Mat I(int n) {
    Mat a(n, n);
    for (int i = 0; i < n; i++) a[i][i] = true;
    return a;
  }

  // (AND, XOR) 半環
  // (AND, OR) 半環には operator/ を割り当てた
  Mat &operator*=(const Mat &B) {
    Mat C(H, B.W);
    for (int i = 0; i < H; i++) {
      for (int j = 0; j < W; j++) {
        if (A[i][j]) C[i] ^= B[j];
      }
    }
    swap(A, C.A);
    return *this;
  }
  Mat operator*(const Mat &B) const { return Mat(*this) *= B; }

  // (AND, OR) 半環
  friend Mat and_or_product(const Mat &A, const Mat &B) {
    Mat C(A.H, B.W);
    for (int i = 0; i < A.H; i++) {
      for (int j = 0; j < A.W; j++) {
        if (A[i][j]) C[i] |= B[j];
      }
    }
    return C;
  }

  // [0, wr) の範囲で掃き出し, rank を返す
  int sweep(int wr = -1) {
    if (wr == -1) wr = W;
    int t = 0;
    for (int u = 0; u < wr; u++) {
      int piv = -1;
      for (int i = t; i < H; i++) {
        if (A[i][u]) {
          piv = i;
          break;
        }
      }
      if (piv == -1) continue;
      if (piv != t) swap(A[piv], A[t]);
      for (int i = 0; i < H; i++) {
        if (i != t && A[i][u]) A[i] ^= A[t];
      }
      t++;
    }
    return t;
  }

  Mat inverse() const {
    assert(H == W);
    int N = H;
    F2_Matrix<H_MAX, W_MAX * 2> c(H, W * 2);
    for (int i = 0; i < N; i++) {
      c[i][i + N] = 1;
      for (int j = 0; j < N; j++) {
        c[i][j] = A[i][j];
      }
    }
    int r = c.sweep();
    assert(r == N);
    Mat b(H, W);
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        b[i][j] = c[i][j + N];
      }
    }
    return b;
  }

  bool operator<(const Mat &rhs) const {
    if (H != rhs.H) return H < rhs.H;
    if (W != rhs.W) return W < rhs.W;
    return A < rhs.A;
  }
  bool operator==(const Mat &rhs) const {
    return H == rhs.H and W == rhs.W and A == rhs.A;
  }

  friend ostream &operator<<(ostream &os, const Mat &b) {
    for (int i = 0; i < b.H; i++) {
      os << "[ ";
      for (int j = 0; j < b.W; j++) {
        os << b[i][j] << ", ";
      }
      os << "],\n";
    }
    return os;
  }
};




template <typename T, typename F>
struct SegmentTree {
  int N;
  int size;
  vector<T> seg;
  const F f;
  const T I;

  SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}

  SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }

  SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
    init(v.size());
    for (int i = 0; i < (int)v.size(); i++) {
      seg[i + size] = v[i];
    }
    build();
  }

  void init(int _N) {
    N = _N;
    size = 1;
    while (size < N) size <<= 1;
    seg.assign(2 * size, I);
  }

  void set(int k, T x) { seg[k + size] = x; }

  void build() {
    for (int k = size - 1; k > 0; k--) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  void update(int k, T x) {
    k += size;
    seg[k] = x;
    while (k >>= 1) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  void add(int k, T x) {
    k += size;
    seg[k] += x;
    while (k >>= 1) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  // query to [a, b)
  T query(int a, int b) {
    T L = I, R = I;
    for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
      if (a & 1) L = f(L, seg[a++]);
      if (b & 1) R = f(seg[--b], R);
    }
    return f(L, R);
  }

  T &operator[](const int &k) { return seg[k + size]; }

  // check(a[l] * ...  * a[r-1]) が true となる最大の r
  // (右端まですべて true なら N を返す)
  template <class C>
  int max_right(int l, C check) {
    assert(0 <= l && l <= N);
    assert(check(I) == true);
    if (l == N) return N;
    l += size;
    T sm = I;
    do {
      while (l % 2 == 0) l >>= 1;
      if (!check(f(sm, seg[l]))) {
        while (l < size) {
          l = (2 * l);
          if (check(f(sm, seg[l]))) {
            sm = f(sm, seg[l]);
            l++;
          }
        }
        return l - size;
      }
      sm = f(sm, seg[l]);
      l++;
    } while ((l & -l) != l);
    return N;
  }

  // check(a[l] * ... * a[r-1]) が true となる最小の l
  // (左端まで true なら 0 を返す)
  template <typename C>
  int min_left(int r, C check) {
    assert(0 <= r && r <= N);
    assert(check(I) == true);
    if (r == 0) return 0;
    r += size;
    T sm = I;
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!check(f(seg[r], sm))) {
        while (r < size) {
          r = (2 * r + 1);
          if (check(f(seg[r], sm))) {
            sm = f(seg[r], sm);
            r--;
          }
        }
        return r + 1 - size;
      }
      sm = f(seg[r], sm);
    } while ((r & -r) != r);
    return 0;
  }
};

using namespace Nyaan;

using Mat = F2_Matrix<65, 128>;

Mat gen() {
  ini(t);
  Mat m(65, 65);
  m[64].flip(64);
  rep(_, t) {
    int s, o;
    u64 a;
    in(s, o, a);
    if (o == 0) {
      // OR
      rep(i, 64) {
        if (gbit(a, i)) {
          m[64].flip(i);
        } else {
          m[(i + 64 - s) & 63].flip(i);
        }
      }
    } else {
      // AND
      rep(i, 64) {
        if (gbit(a, i)) {
          m[(i + 64 - s) & 63].flip(i);
        } else {
          // do nothing
        }
      }
    }
  }
  {
    u64 b;
    in(b);
    rep(i, 64) {
      if (gbit(b, i)) {
        m[64].flip(i);
      }
    }
  }

  return m;
}

void q() {
  inl(N, Q, C);
  V<Mat> init(N);
  rep(i, N) init[i] = gen();

  SegmentTree seg(
      init, [](Mat& a, Mat& b) { return a * b; }, Mat::I(65));

  rep(_, Q) {
    ini(cmd);
    if (cmd == 0) {
      inl(l, r);
      --l;
      Mat m = seg.query(l, r);

      u64 a;
      in(a);
      Mat v(1, 65);
      v[0].flip(64);
      rep(i, 64) if (gbit(a, i)) v[0].flip(i);
      Mat w = v * m;
      u64 ans = 0;
      rep(i, 64) if (w[0][i]) ans += 1uLL << i;
      out(ans);
    } else {
      inl(l);
      --l;
      seg.update(l, gen());
    }
  }
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3604kb

input:

3 5 1
1 4 0 0 51966
1 60 0 0 0
1 0 0 16 15
0 1 1 771
0 2 2 32368
0 3 3 0
1 2 2 0 0 15 61 1 4095 46681
0 1 3 2023

output:

64206
2023
31
1112

result:

ok 4 tokens

Test #2:

score: 0
Accepted
time: 1ms
memory: 3600kb

input:

9 9 3
32 9 0 17785061119123981789 33 0 10890571864137198682 42 0 9437574736788763477 34 0 5239651887868507470 55 0 14741743279679654187 27 1 1444116632918569317 38 1 5740886562180922636 1 1 8113356142324084796 3 0 10955266306442425904 60 0 16421026339459788005 53 0 1595107134632608917 48 1 923204972...

output:

9487331362121050549
3906661590723083106
15757672015979182109
4975471776251039345
11503109206538591140
3763610618439604410

result:

ok 6 tokens

Test #3:

score: 0
Accepted
time: 140ms
memory: 3796kb

input:

1 20000 400
32 13 0 1721926083061553294 52 1 8951352260297008058 6 0 3180917732545757991 63 1 14978562500072226750 50 1 7331113732303115313 59 0 688182721924779475 12 0 16291922173168822489 61 0 16018198440613086698 8 0 12494084957448674305 7 0 2834422858291562646 42 1 10354539547309738529 28 0 2541...

output:

11827781865759498816
7454610526276185721
9581050724293785387
2177163806257271094
14004004964877510141
18073834598135159471
16966489063087641088
12289032565388413023
17823140805867698239
18104549908461644670
15570008264282957124
12400954982104000299
9842549278742638708
16535034933613060362
1561642006...

result:

ok 19600 tokens

Test #4:

score: 0
Accepted
time: 2656ms
memory: 4812kb

input:

500 20000 400
32 3 0 9869926173615303101 39 1 11114680792832491178 54 1 3380955246053990760 31 0 16868042247314276464 26 0 5814925615581342395 30 1 1114053898154397400 46 1 9215698002668459992 38 1 12938485987410997250 58 0 8030873196223549640 0 0 16055471402053138912 47 1 16568729207788187629 63 0 ...

output:

9119093329811149961
16901643057538871933
17161855998497876349
3964234071281411558
13588188063229334268
15557968976322375381
4612345875926431452
9507168112801039022
9504318642653891468
217407202160767706
12982350345598971306
17957502630817476223
6353877977318728572
15552768639781831485
16778108770682...

result:

ok 19600 tokens

Test #5:

score: 0
Accepted
time: 3927ms
memory: 15800kb

input:

4000 20000 400
35 33 0 18435679328748604368 55 1 10851974578636476759 1 0 11332084644969697080 13 0 4243547822701774011 19 0 18197854269436975495 32 0 10133703694198056054 6 0 12655387670867301210 36 0 1246525872821095171 51 1 812047498663608637 4 0 9797423115860097390 7 1 12105773148377740641 17 0 ...

output:

11875257514484243925
3443357416933857062
16160011677622853538
1582145987019406393
15019762274690743371
3128972641411454448
10632018957963074870
2420532366876270818
16130728863118353230
15834956073901517645
18404809296474853851
10982435108266120760
16463778300806795274
11990886156320593058
1145171640...

result:

ok 19600 tokens

Test #6:

score: -100
Time Limit Exceeded

input:

20000 20000 0
34 47 1 3147866938814566873 50 0 8051884074279018250 4 0 11476150812073861567 54 0 3931985566612211642 60 1 9226417006726638292 49 0 2435425653073267226 33 1 5976119177961927073 40 1 3169532703977184656 2 1 17206894689684881943 37 0 2316971949450684490 7 1 7087775905790436416 18 1 7557...

output:

8031710763259664674
10015579400510819759
9509776159199873854
252965904282343862
17471441301398284397
6167329408972068582
11581702001320217920
13373488743211628824
2094753313448112669
15503010008451014749
384500896248723935
10501371892025480221
8907735695899875922
14479597201387282763
164403466075406...

result: