QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#348579#8329. Excuseucup-team159#AC ✓106ms20172kbC++2312.6kb2024-03-09 19:42:302024-03-09 19:42:30

Judging History

你现在查看的是最新测评结果

  • [2024-03-09 19:42:30]
  • 评测
  • 测评结果:AC
  • 用时:106ms
  • 内存:20172kb
  • [2024-03-09 19:42:30]
  • 提交

answer

#line 1 "B.cpp"
// #pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("Ofast")

#line 2 "/mnt/c/Users/tsigm/Documents/Cprogram/library/template.hpp"

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
	if(x<y){ x=y; return true; }
	return false;
}
template<class T,class U> bool chmin(T& x, U y){
	if(y<x){ x=y; return true; }
	return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
    return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
  return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
	return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
	o<<"{";
	for(const T& v:vc) o<<v<<",";
	o<<"}";
	return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }

#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ~ ";
	dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {";  \
	for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif

template<class D> D divFloor(D a, D b){
	return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
	return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}

/*
x       0  1  2  3  4  5  6  7  8  9
bsr(x) -1  0  1  1  2  2  2  2  3  3
最上位bit
*/
int bsr(int x){
	return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(uint x){
	return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(ll x){
	return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
int bsr(ull x){
	return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}

/*
x       0  1  2  3  4  5  6  7  8  9
bsl(x) -1  0  1  0  2  0  1  0  3  0
最下位bit
*/
int bsl(int x){
	if(x==0) return -1;
	return __builtin_ctz(x);
}
int bsl(uint x){
	if(x==0) return -1;
	return __builtin_ctz(x);
}
int bsl(ll x){
	if(x==0) return -1;
	return __builtin_ctzll(x);
}
int bsl(ull x){
	if(x==0) return -1;
	return __builtin_ctzll(x);
}


template<class T>
T rnd(T l,T r){	//[l,r)
	using D = uniform_int_distribution<T>;
	static random_device rd;
	static mt19937 gen(rd());
	return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){	//[0,n)
	return rnd(T(0),n);
}
#line 1 "/mnt/c/Users/tsigm/Documents/Cprogram/library/math/mint.cpp"
/*
	任意mod なら 
	template なくして costexpr の行消して global に unsigned int mod = 1;
	で cin>>mod してから使う
	任意 mod はかなり遅いので、できれば "atcoder/modint" を使う
*/

template<unsigned int mod_>
struct ModInt{
	using uint = unsigned int;
	using ll = long long;
	using ull = unsigned long long;

	constexpr static uint mod = mod_;

	uint v;
	ModInt():v(0){}
	ModInt(ll _v):v(normS(_v%mod+mod)){}
	explicit operator bool() const {return v!=0;}
	static uint normS(const uint &x){return (x<mod)?x:x-mod;}		// [0 , 2*mod-1] -> [0 , mod-1]
	static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
	ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
	ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
	ModInt operator-() const { return make(normS(mod-v)); }
	ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
	ModInt operator/(const ModInt& b) const { return *this*b.inv();}
	ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
	ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
	ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
	ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
	ModInt& operator++(int){ return *this=*this+1;}
	ModInt& operator--(int){ return *this=*this-1;}
	template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
	template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
	template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
	template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
	ModInt pow(ll p) const {
		if(p<0) return inv().pow(-p);
		ModInt a = 1;
		ModInt x = *this;
		while(p){
			if(p&1) a *= x;
			x *= x;
			p >>= 1;
		}
		return a;
	}
	ModInt inv() const {		// should be prime
		return pow(mod-2);
	}
	// ll extgcd(ll a,ll b,ll &x,ll &y) const{
	// 	ll p[]={a,1,0},q[]={b,0,1};
	// 	while(*q){
	// 		ll t=*p/ *q;
	// 		rep(i,3) swap(p[i]-=t*q[i],q[i]);
	// 	}
	// 	if(p[0]<0) rep(i,3) p[i]=-p[i];
	// 	x=p[1],y=p[2];
	// 	return p[0];
	// }
	// ModInt inv() const {
	// 	ll x,y;
	// 	extgcd(v,mod,x,y);
	// 	return make(normS(x+mod));
	// }

	bool operator==(const ModInt& b) const { return v==b.v;}
	bool operator!=(const ModInt& b) const { return v!=b.v;}
	bool operator<(const ModInt& b) const { return v<b.v;}
	friend istream& operator>>(istream &o,ModInt& x){
		ll tmp;
		o>>tmp;
		x=ModInt(tmp);
		return o;
	}
	friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;

V<mint> fact,ifact,invs;
// a,b >= 0 のみ
mint Choose(int a,int b){
	if(b<0 || a<b) return 0;
	return fact[a] * ifact[b] * ifact[a-b];
}

/*
// b >= 0 の範囲で、 Choose(a,b) = a(a-1)..(a-b+1) / b!
mint Choose(int a,int b){
	if(b<0 || a<b) return 0;
	return fact[a] * ifact[b] * ifact[a-b];
}
*/

void InitFact(int N){	//[0,N]
	N++;
	fact.resize(N);
	ifact.resize(N);
	invs.resize(N);
	fact[0] = 1;
	rep1(i,N-1) fact[i] = fact[i-1] * i;
	ifact[N-1] = fact[N-1].inv();
	for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
	rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
#line 6 "B.cpp"
// inplace_fmt (without bit rearranging)
// fft:
// 		a[rev(i)] <- \sum_j \zeta^{ij} a[j]
// invfft:
//		a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)]
// These two are inversions.


// !!! CHANGE IF MOD is unusual !!!
const int ORDER_2_MOD_MINUS_1 = 23;	// ord_2 (mod-1)
const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)*

void fft(V<mint>& a){
	static constexpr uint mod = mint::mod;
	static constexpr uint mod2 = mod + mod;
	static const int H = ORDER_2_MOD_MINUS_1;
	static const mint root = PRIMITIVE_ROOT;
	static mint magic[H-1];

	int n = si(a);
	assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H);	// n should be power of 2

	if(!magic[0]){		// precalc
		rep(i,H-1){
			mint w = -root.pow(((mod-1)>>(i+2))*3);
			magic[i] = w;
		}
	}
	int m = n;
	if(m >>= 1){
		rep(i,m){
			uint v = a[i+m].v;					// < M
			a[i+m].v = a[i].v + mod - v;		// < 2M
			a[i].v += v;						// < 2M
		}
	}
	if(m >>= 1){
		mint p = 1;
		for(int h=0,s=0; s<n; s += m*2){
			for(int i=s;i<s+m;i++){
				uint v = (a[i+m] * p).v;		// < M
				a[i+m].v = a[i].v + mod - v;	// < 3M
				a[i].v += v;					// < 3M
			}
			p *= magic[__builtin_ctz(++h)];
		}
	}
	while(m){
		if(m >>= 1){
			mint p = 1;
			for(int h=0,s=0; s<n; s += m*2){
				for(int i=s;i<s+m;i++){
					uint v = (a[i+m] * p).v;		// < M
					a[i+m].v = a[i].v + mod - v;	// < 4M
					a[i].v += v;					// < 4M
				}
				p *= magic[__builtin_ctz(++h)];
			}
		}
		if(m >>= 1){
			mint p = 1;
			for(int h=0,s=0; s<n; s += m*2){
				for(int i=s;i<s+m;i++){
					uint v = (a[i+m] * p).v;								// < M
					a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;	// < 2M
					a[i+m].v = a[i].v + mod - v;							// < 3M
					a[i].v += v;											// < 3M
				}
				p *= magic[__builtin_ctz(++h)];
			}
		}
	}
	rep(i,n){
		a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;		// < 2M
		a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v;		// < M
	}
	// finally < mod !!
}
void invfft(V<mint>& a){
	static constexpr uint mod = mint::mod;
	static constexpr uint mod2 = mod + mod;
	static const int H = ORDER_2_MOD_MINUS_1;
	static const mint root = PRIMITIVE_ROOT;
	static mint magic[H-1];

	int n = si(a);
	assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H);	// n should be power of 2

	if(!magic[0]){		// precalc
		rep(i,H-1){
			mint w = -root.pow(((mod-1)>>(i+2))*3);
			magic[i] = w.inv();
		}
	}
	int m = 1;
	if(m < n>>1){
		mint p = 1;
		for(int h=0,s=0; s<n; s += m*2){
			for(int i=s;i<s+m;i++){
				ull x = a[i].v + mod - a[i+m].v;	// < 2M
				a[i].v += a[i+m].v;					// < 2M
				a[i+m].v = (p.v * x) % mod;			// < M
			}
			p *= magic[__builtin_ctz(++h)];
		}
		m <<= 1;
	}
	for(;m < n>>1; m <<= 1){
		mint p = 1;
		for(int h=0,s=0; s<n; s+= m*2){
			for(int i=s;i<s+(m>>1);i++){
				ull x = a[i].v + mod2 - a[i+m].v;	// < 4M
				a[i].v += a[i+m].v;					// < 4M
				a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v;	// < 2M
				a[i+m].v = (p.v * x) % mod;		// < M
			}
			for(int i=s+(m>>1); i<s+m; i++){
				ull x = a[i].v + mod - a[i+m].v;	// < 2M
				a[i].v += a[i+m].v;	// < 2M
				a[i+m].v = (p.v * x) % mod;	// < M
			}
			p *= magic[__builtin_ctz(++h)];
		}
	}
	if(m < n){
		rep(i,m){
			uint x = a[i].v + mod2 - a[i+m].v;	// < 4M
			a[i].v += a[i+m].v;	// < 4M
			a[i+m].v = x;	// < 4M
		}
	}
	const mint in = mint(n).inv();
	rep(i,n) a[i] *= in;	// < M
	// finally < mod !!
}

// A,B = 500000 -> 70ms
// verify https://judge.yosupo.jp/submission/44937
V<mint> multiply(V<mint> a, V<mint> b) {
	int A = si(a), B = si(b);
	if (!A || !B) return {};
	int n = A+B-1;
	int s = 1; while(s<n) s*=2;
	if(a == b){			// # of fft call : 3 -> 2
		a.resize(s); fft(a);
		rep(i,s) a[i] *= a[i];
	}else{
		a.resize(s); fft(a);
		b.resize(s); fft(b);
		rep(i,s) a[i] *= b[i];
	}
	invfft(a); a.resize(n);
	return a;
}

template<class mint>
struct Online_Convolution{
	const int thresh = 3;
	V<mint> f,g,h;
	VV<mint> fft_f,fft_g;

	pair<V<mint>,V<mint>> calc_fft(int k){
		// 長さ 2^k の suffix を fft したものを返す
		int L = 1<<k;
		V<mint> f_suf(2*L), g_suf(2*L);
		rep(i,L){
			f_suf[i] = f[si(f)-L+i];
			g_suf[i] = g[si(g)-L+i];
		}
		if(k > thresh){
			fft(f_suf); fft(g_suf);
		}
		return {f_suf, g_suf};
	}
	void calc(int k){
		int L = 1<<k;
		auto [zf,zg] = calc_fft(k);
		V<mint> zh(L*2);
		bool fst = (k >= si(fft_f));
		if(fst){
			fft_f.eb(zf);
			fft_g.eb(zg);
		}
		if(k > thresh){
			if(fst){
				rep(i,L*2) zh[i] += zf[i] * zg[i];
				invfft(zh);
			}else{
				rep(i,L*2){
					zh[i] += zf[i] * fft_g[k][i];
					zh[i] += zg[i] * fft_f[k][i];
				}
				invfft(zh);
			}
		}else{
			if(fst){
				rep(i,L) rep(j,L) zh[i+j] += zf[i] * zg[j];
			}else{
				rep(i,L) rep(j,L) zh[i+j] += zf[i] * fft_g[k][j];
				rep(i,L) rep(j,L) zh[i+j] += zg[i] * fft_f[k][j];
			}
		}
		int off = si(f)-1;
		rep(i,L*2-1){
			if(si(h) <= off+i) h.eb(0);
			h[off + i] += zh[i];
		}
	}

	mint query(int i, mint f_i, mint g_i){
		assert(i == si(f));
		f.eb(f_i);
		g.eb(g_i);
		int K = __builtin_ctz(i+2) + (__builtin_popcount(i+2) > 1 ? 1 : 0);
		rep(k,K) calc(k);
		return h[i];
	}
};
mint brute(int N){
	V<mint> f(N+1);
	rep1(n,N){
		mint tmp = 0;
		rep1(k,n) tmp += Choose(n,k) * f[n-k];
		f[n] = 1-mint(2).pow(-n) + mint(2).pow(-n) * tmp;
	}
	return f[N];
}
int main(){
	cin.tie(0);
	ios::sync_with_stdio(false);		//DON'T USE scanf/printf/puts !!
	cout << fixed << setprecision(20);

	InitFact(TEN(6));
	int N; cin >> N;
	V<mint> i2(N+1);
	{
		mint inv2 = mint(2).inv();
		i2[0] = 1; rep(i,N) i2[i+1] = i2[i] * inv2;
	}
	V<mint> f(N+1);
	Online_Convolution<mint> X;
	f[1] = mint(2).inv();
	for(int n=2;n<=N;n++){
		f[n] = 1-i2[n] + fact[n] * i2[n] * X.query(n-2, f[n-1]*ifact[n-1], ifact[n-1]);
	}
	cout << f[N] << endl;
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 12ms
memory: 14716kb

input:

1

output:

499122177

result:

ok 1 number(s): "499122177"

Test #2:

score: 0
Accepted
time: 8ms
memory: 14820kb

input:

3

output:

561512450

result:

ok 1 number(s): "561512450"

Test #3:

score: 0
Accepted
time: 8ms
memory: 14584kb

input:

10

output:

609769250

result:

ok 1 number(s): "609769250"

Test #4:

score: 0
Accepted
time: 12ms
memory: 14984kb

input:

1000

output:

475714976

result:

ok 1 number(s): "475714976"

Test #5:

score: 0
Accepted
time: 13ms
memory: 15016kb

input:

1024

output:

178624793

result:

ok 1 number(s): "178624793"

Test #6:

score: 0
Accepted
time: 106ms
memory: 20172kb

input:

100000

output:

537516197

result:

ok 1 number(s): "537516197"

Test #7:

score: 0
Accepted
time: 102ms
memory: 20160kb

input:

99471

output:

489775976

result:

ok 1 number(s): "489775976"

Test #8:

score: 0
Accepted
time: 73ms
memory: 18800kb

input:

65536

output:

171446457

result:

ok 1 number(s): "171446457"

Test #9:

score: 0
Accepted
time: 77ms
memory: 19292kb

input:

84792

output:

371578800

result:

ok 1 number(s): "371578800"

Test #10:

score: 0
Accepted
time: 93ms
memory: 19432kb

input:

93846

output:

841905002

result:

ok 1 number(s): "841905002"

Extra Test:

score: 0
Extra Test Passed