QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#348579 | #8329. Excuse | ucup-team159# | AC ✓ | 106ms | 20172kb | C++23 | 12.6kb | 2024-03-09 19:42:30 | 2024-03-09 19:42:30 |
Judging History
answer
#line 1 "B.cpp"
// #pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("Ofast")
#line 2 "/mnt/c/Users/tsigm/Documents/Cprogram/library/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsr(x) -1 0 1 1 2 2 2 2 3 3
最上位bit
*/
int bsr(int x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(uint x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(ll x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
int bsr(ull x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsl(x) -1 0 1 0 2 0 1 0 3 0
最下位bit
*/
int bsl(int x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(uint x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(ll x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
int bsl(ull x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
template<class T>
T rnd(T l,T r){ //[l,r)
using D = uniform_int_distribution<T>;
static random_device rd;
static mt19937 gen(rd());
return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){ //[0,n)
return rnd(T(0),n);
}
#line 1 "/mnt/c/Users/tsigm/Documents/Cprogram/library/math/mint.cpp"
/*
任意mod なら
template なくして costexpr の行消して global に unsigned int mod = 1;
で cin>>mod してから使う
任意 mod はかなり遅いので、できれば "atcoder/modint" を使う
*/
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
ModInt inv() const { // should be prime
return pow(mod-2);
}
// ll extgcd(ll a,ll b,ll &x,ll &y) const{
// ll p[]={a,1,0},q[]={b,0,1};
// while(*q){
// ll t=*p/ *q;
// rep(i,3) swap(p[i]-=t*q[i],q[i]);
// }
// if(p[0]<0) rep(i,3) p[i]=-p[i];
// x=p[1],y=p[2];
// return p[0];
// }
// ModInt inv() const {
// ll x,y;
// extgcd(v,mod,x,y);
// return make(normS(x+mod));
// }
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
bool operator<(const ModInt& b) const { return v<b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;
V<mint> fact,ifact,invs;
// a,b >= 0 のみ
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
/*
// b >= 0 の範囲で、 Choose(a,b) = a(a-1)..(a-b+1) / b!
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
*/
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
#line 6 "B.cpp"
// inplace_fmt (without bit rearranging)
// fft:
// a[rev(i)] <- \sum_j \zeta^{ij} a[j]
// invfft:
// a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)]
// These two are inversions.
// !!! CHANGE IF MOD is unusual !!!
const int ORDER_2_MOD_MINUS_1 = 23; // ord_2 (mod-1)
const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)*
void fft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w;
}
}
int m = n;
if(m >>= 1){
rep(i,m){
uint v = a[i+m].v; // < M
a[i+m].v = a[i].v + mod - v; // < 2M
a[i].v += v; // < 2M
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
while(m){
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 4M
a[i].v += v; // < 4M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
}
rep(i,n){
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v; // < M
}
// finally < mod !!
}
void invfft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w.inv();
}
}
int m = 1;
if(m < n>>1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
m <<= 1;
}
for(;m < n>>1; m <<= 1){
mint p = 1;
for(int h=0,s=0; s<n; s+= m*2){
for(int i=s;i<s+(m>>1);i++){
ull x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
for(int i=s+(m>>1); i<s+m; i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m < n){
rep(i,m){
uint x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i+m].v = x; // < 4M
}
}
const mint in = mint(n).inv();
rep(i,n) a[i] *= in; // < M
// finally < mod !!
}
// A,B = 500000 -> 70ms
// verify https://judge.yosupo.jp/submission/44937
V<mint> multiply(V<mint> a, V<mint> b) {
int A = si(a), B = si(b);
if (!A || !B) return {};
int n = A+B-1;
int s = 1; while(s<n) s*=2;
if(a == b){ // # of fft call : 3 -> 2
a.resize(s); fft(a);
rep(i,s) a[i] *= a[i];
}else{
a.resize(s); fft(a);
b.resize(s); fft(b);
rep(i,s) a[i] *= b[i];
}
invfft(a); a.resize(n);
return a;
}
template<class mint>
struct Online_Convolution{
const int thresh = 3;
V<mint> f,g,h;
VV<mint> fft_f,fft_g;
pair<V<mint>,V<mint>> calc_fft(int k){
// 長さ 2^k の suffix を fft したものを返す
int L = 1<<k;
V<mint> f_suf(2*L), g_suf(2*L);
rep(i,L){
f_suf[i] = f[si(f)-L+i];
g_suf[i] = g[si(g)-L+i];
}
if(k > thresh){
fft(f_suf); fft(g_suf);
}
return {f_suf, g_suf};
}
void calc(int k){
int L = 1<<k;
auto [zf,zg] = calc_fft(k);
V<mint> zh(L*2);
bool fst = (k >= si(fft_f));
if(fst){
fft_f.eb(zf);
fft_g.eb(zg);
}
if(k > thresh){
if(fst){
rep(i,L*2) zh[i] += zf[i] * zg[i];
invfft(zh);
}else{
rep(i,L*2){
zh[i] += zf[i] * fft_g[k][i];
zh[i] += zg[i] * fft_f[k][i];
}
invfft(zh);
}
}else{
if(fst){
rep(i,L) rep(j,L) zh[i+j] += zf[i] * zg[j];
}else{
rep(i,L) rep(j,L) zh[i+j] += zf[i] * fft_g[k][j];
rep(i,L) rep(j,L) zh[i+j] += zg[i] * fft_f[k][j];
}
}
int off = si(f)-1;
rep(i,L*2-1){
if(si(h) <= off+i) h.eb(0);
h[off + i] += zh[i];
}
}
mint query(int i, mint f_i, mint g_i){
assert(i == si(f));
f.eb(f_i);
g.eb(g_i);
int K = __builtin_ctz(i+2) + (__builtin_popcount(i+2) > 1 ? 1 : 0);
rep(k,K) calc(k);
return h[i];
}
};
mint brute(int N){
V<mint> f(N+1);
rep1(n,N){
mint tmp = 0;
rep1(k,n) tmp += Choose(n,k) * f[n-k];
f[n] = 1-mint(2).pow(-n) + mint(2).pow(-n) * tmp;
}
return f[N];
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
InitFact(TEN(6));
int N; cin >> N;
V<mint> i2(N+1);
{
mint inv2 = mint(2).inv();
i2[0] = 1; rep(i,N) i2[i+1] = i2[i] * inv2;
}
V<mint> f(N+1);
Online_Convolution<mint> X;
f[1] = mint(2).inv();
for(int n=2;n<=N;n++){
f[n] = 1-i2[n] + fact[n] * i2[n] * X.query(n-2, f[n-1]*ifact[n-1], ifact[n-1]);
}
cout << f[N] << endl;
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 12ms
memory: 14716kb
input:
1
output:
499122177
result:
ok 1 number(s): "499122177"
Test #2:
score: 0
Accepted
time: 8ms
memory: 14820kb
input:
3
output:
561512450
result:
ok 1 number(s): "561512450"
Test #3:
score: 0
Accepted
time: 8ms
memory: 14584kb
input:
10
output:
609769250
result:
ok 1 number(s): "609769250"
Test #4:
score: 0
Accepted
time: 12ms
memory: 14984kb
input:
1000
output:
475714976
result:
ok 1 number(s): "475714976"
Test #5:
score: 0
Accepted
time: 13ms
memory: 15016kb
input:
1024
output:
178624793
result:
ok 1 number(s): "178624793"
Test #6:
score: 0
Accepted
time: 106ms
memory: 20172kb
input:
100000
output:
537516197
result:
ok 1 number(s): "537516197"
Test #7:
score: 0
Accepted
time: 102ms
memory: 20160kb
input:
99471
output:
489775976
result:
ok 1 number(s): "489775976"
Test #8:
score: 0
Accepted
time: 73ms
memory: 18800kb
input:
65536
output:
171446457
result:
ok 1 number(s): "171446457"
Test #9:
score: 0
Accepted
time: 77ms
memory: 19292kb
input:
84792
output:
371578800
result:
ok 1 number(s): "371578800"
Test #10:
score: 0
Accepted
time: 93ms
memory: 19432kb
input:
93846
output:
841905002
result:
ok 1 number(s): "841905002"
Extra Test:
score: 0
Extra Test Passed