QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#347775 | #8335. Fast Hash Transform | ucup-team087# | AC ✓ | 4799ms | 36812kb | C++20 | 17.2kb | 2024-03-09 15:22:33 | 2024-03-09 15:22:34 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 5 "main.cpp"
using ARR = array<u64, 64>;
using MAT = pair<ARR, u64>;
constexpr u64 RND = 941191446945809507;
ARR ZERO;
struct Mono {
using value_type = MAT;
using X = value_type;
static X op(X& A, X& B) {
if (A.se == RND) return B;
if (B.se == RND) return A;
auto [X, x] = A;
auto [Y, y] = B;
ARR Z = ZERO;
u64 z = 0;
FOR(i, 64) {
FOR(j, 64) {
if (X[i] >> j & 1) { Z[i] ^= Y[j]; }
}
}
z ^= y;
FOR(i, 64) if (x >> i & 1) z ^= Y[i];
return {Z, z};
}
static constexpr X unit() { return {ZERO, RND}; }
static constexpr bool commute = 0;
};
void solve() {
LL(N, Q, ccc);
auto read_matrix = [&](int idx) -> MAT {
ARR X = ZERO;
u64 add = 0;
LL(m);
FOR(m) {
INT(s);
INT(op);
U64(a);
// a op (x<<s) を XOR する
if (op == 0) {
// OR
FOR(i, 64) {
if (a >> i & 1) {
// 必ず 1
add ^= u64(1) << i;
} else {
X[(64 + i - s) & 63] ^= u64(1) << i;
}
}
}
if (op == 1) {
// AND
FOR(i, 64) {
if (!(a >> i & 1)) {
// 必ず 0
} else {
X[(64 + i - s) & 63] ^= u64(1) << i;
}
}
}
}
U64(b);
add ^= b;
return {X, add};
};
SegTree<Mono> seg(N, read_matrix);
FOR(Q) {
INT(tp);
if (tp == 0) {
LL(L, R);
U64(v);
auto [X, add] = seg.prod(--L, R);
u64 ANS = 0;
FOR(i, 64) {
if (v >> i & 1) ANS ^= X[i];
}
ANS ^= add;
print(ANS);
}
if (tp == 1) {
INT(idx);
--idx;
seg.set(idx, read_matrix(idx));
}
}
}
signed main() {
solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3600kb
input:
3 5 1 1 4 0 0 51966 1 60 0 0 0 1 0 0 16 15 0 1 1 771 0 2 2 32368 0 3 3 0 1 2 2 0 0 15 61 1 4095 46681 0 1 3 2023
output:
64206 2023 31 1112
result:
ok 4 tokens
Test #2:
score: 0
Accepted
time: 1ms
memory: 3668kb
input:
9 9 3 32 9 0 17785061119123981789 33 0 10890571864137198682 42 0 9437574736788763477 34 0 5239651887868507470 55 0 14741743279679654187 27 1 1444116632918569317 38 1 5740886562180922636 1 1 8113356142324084796 3 0 10955266306442425904 60 0 16421026339459788005 53 0 1595107134632608917 48 1 923204972...
output:
9487331362121050549 3906661590723083106 15757672015979182109 4975471776251039345 11503109206538591140 3763610618439604410
result:
ok 6 tokens
Test #3:
score: 0
Accepted
time: 7ms
memory: 3960kb
input:
1 20000 400 32 13 0 1721926083061553294 52 1 8951352260297008058 6 0 3180917732545757991 63 1 14978562500072226750 50 1 7331113732303115313 59 0 688182721924779475 12 0 16291922173168822489 61 0 16018198440613086698 8 0 12494084957448674305 7 0 2834422858291562646 42 1 10354539547309738529 28 0 2541...
output:
11827781865759498816 7454610526276185721 9581050724293785387 2177163806257271094 14004004964877510141 18073834598135159471 16966489063087641088 12289032565388413023 17823140805867698239 18104549908461644670 15570008264282957124 12400954982104000299 9842549278742638708 16535034933613060362 1561642006...
result:
ok 19600 tokens
Test #4:
score: 0
Accepted
time: 1667ms
memory: 4260kb
input:
500 20000 400 32 3 0 9869926173615303101 39 1 11114680792832491178 54 1 3380955246053990760 31 0 16868042247314276464 26 0 5814925615581342395 30 1 1114053898154397400 46 1 9215698002668459992 38 1 12938485987410997250 58 0 8030873196223549640 0 0 16055471402053138912 47 1 16568729207788187629 63 0 ...
output:
9119093329811149961 16901643057538871933 17161855998497876349 3964234071281411558 13588188063229334268 15557968976322375381 4612345875926431452 9507168112801039022 9504318642653891468 217407202160767706 12982350345598971306 17957502630817476223 6353877977318728572 15552768639781831485 16778108770682...
result:
ok 19600 tokens
Test #5:
score: 0
Accepted
time: 2607ms
memory: 7672kb
input:
4000 20000 400 35 33 0 18435679328748604368 55 1 10851974578636476759 1 0 11332084644969697080 13 0 4243547822701774011 19 0 18197854269436975495 32 0 10133703694198056054 6 0 12655387670867301210 36 0 1246525872821095171 51 1 812047498663608637 4 0 9797423115860097390 7 1 12105773148377740641 17 0 ...
output:
11875257514484243925 3443357416933857062 16160011677622853538 1582145987019406393 15019762274690743371 3128972641411454448 10632018957963074870 2420532366876270818 16130728863118353230 15834956073901517645 18404809296474853851 10982435108266120760 16463778300806795274 11990886156320593058 1145171640...
result:
ok 19600 tokens
Test #6:
score: 0
Accepted
time: 3555ms
memory: 36764kb
input:
20000 20000 0 34 47 1 3147866938814566873 50 0 8051884074279018250 4 0 11476150812073861567 54 0 3931985566612211642 60 1 9226417006726638292 49 0 2435425653073267226 33 1 5976119177961927073 40 1 3169532703977184656 2 1 17206894689684881943 37 0 2316971949450684490 7 1 7087775905790436416 18 1 7557...
output:
8031710763259664674 10015579400510819759 9509776159199873854 252965904282343862 17471441301398284397 6167329408972068582 11581702001320217920 13373488743211628824 2094753313448112669 15503010008451014749 384500896248723935 10501371892025480221 8907735695899875922 14479597201387282763 164403466075406...
result:
ok 20000 tokens
Test #7:
score: 0
Accepted
time: 3561ms
memory: 36692kb
input:
20000 20000 20 28 31 1 17220760822712602145 12 1 10079395927654210001 40 0 10440736241216457314 20 1 14759495678166748212 55 1 8734257463550073646 60 0 543206106562221008 29 1 5402811237936853387 52 1 3884345269948184760 22 0 7873959847686200341 15 1 18396630536251250330 25 0 18230407003294263406 14...
output:
6531775129959975384 6212576544894999781 4191848452578359691 2769536540387251859 15526337103142577854 14948743844803225542 15235110724610778185 9004056994453026335 1028305510694260706 13496210650896843548 13961471020487846633 1864980030930734934 15243868808579626755 10451839696548403150 1178402342726...
result:
ok 19980 tokens
Test #8:
score: 0
Accepted
time: 3577ms
memory: 36680kb
input:
20000 20000 400 41 15 1 10590708978689078436 33 0 17448869030270552656 37 1 16782453056389226553 2 1 18313039076194285622 53 1 7894371271572806769 60 1 14563226108042670650 56 0 12694119759311053234 12 1 969626878679760122 28 1 8906626075909573228 20 1 11632670066953088447 50 0 13097960756795495550 ...
output:
7425391644666486729 17533666397961516801 16986235811843827275 1784742314571007240 13192305384063626572 12739810377012216000 1179361465141596122 7698346401428161235 6903188112913915716 5380404381348976227 16126105607866972637 12798978320947566556 11234201442491665890 16073897288956866956 151328474491...
result:
ok 19600 tokens
Test #9:
score: 0
Accepted
time: 3570ms
memory: 36704kb
input:
20000 20000 400 33 39 1 17067623245236507261 27 1 7041428814521205530 50 1 10823426118594256003 28 1 7163716190894912799 12 1 4080987667516350158 63 0 17082717673883070565 17 0 11310350135715835231 51 1 12855244004029414317 38 0 9814237273168847221 57 1 3708701962235763971 37 0 10158992933772396697 ...
output:
6864973236048047224 18318008901523164537 13500746067907696382 13161681605750995854 3452654261090196316 14847903013724109682 7301818645657195470 15784097910646013208 6555334273152043996 6337001136120562705 7065460407919669838 17502323856909932125 12099828260978288865 17244785354672463736 159661862214...
result:
ok 19600 tokens
Test #10:
score: 0
Accepted
time: 408ms
memory: 36772kb
input:
20000 20000 0 37 46 0 4806156443854081866 29 0 6910842714881233745 61 0 9379366064412681113 32 1 718568893402460472 45 0 1234243654449881049 16 0 9791590151480029686 24 1 801156398497308107 20 1 1638149966892153162 3 1 483739892768149714 56 1 3070030763953269690 38 1 11944075913457601606 6 1 8068547...
output:
17693343388614420171 11014279187501816246 7111154205373939902 5948421254644613369 5776121468606637836 16944170640450069348 8394185836099893155 11947149219582604015 4508739183749291929 11471060687727420580 3924131475517252887 1743542114579130111 14487529569441993654 8062193838630657668 18359613799309...
result:
ok 20000 tokens
Test #11:
score: 0
Accepted
time: 502ms
memory: 36736kb
input:
20000 20000 400 31 63 1 14360706182574306953 17 0 4643864577315796645 48 0 11264878137122897405 18 1 14150130986659920202 25 1 15979000250901513596 49 0 16241841209566112679 37 1 16762565151400121253 14 1 7376170230332808198 26 1 10868082441744868454 27 1 6949308347230687639 44 1 4116452321258930556...
output:
4493451016206578040 14208826853413050113 15020158700931574670 16337826900074673926 5403566933376608394 8871156492968482557 8911109963819675601 6213157285507240354 17190717170193641517 15578273901773478953 1369444627312020075 11786462107951385516 17634527799358234224 18347358352139830828 145863906383...
result:
ok 19600 tokens
Test #12:
score: 0
Accepted
time: 4568ms
memory: 36756kb
input:
20000 20000 0 25 16 0 2668205375195949736 34 0 2748287585311204102 37 1 4531486636255948251 24 0 14410309392802368907 52 1 851885811168352867 47 1 15887239727531457455 42 0 8819527325570258215 44 0 16146066124743535517 46 1 1041563265194349313 11 1 13140073107604291185 0 1 16670532562293262804 56 1 ...
output:
5924012028700061898 4718073419648080016 13993322115865028469 82790239609178342 887419913876033685 15321668567642867070 8962935781265467660 1552533755174937777 16683793257623944188 6900756788022393102 10981237528745871227 5789630421744738481 9056874037200094100 15328577526113324947 627381852022728881...
result:
ok 20000 tokens
Test #13:
score: 0
Accepted
time: 4588ms
memory: 36692kb
input:
20000 20000 400 29 26 0 4544814232153615705 62 0 13471881549916225637 53 0 595040484360290534 17 1 11949377632182068615 20 0 9311349995021422035 60 0 816595034603135343 48 0 10654197142859256352 24 0 4772788762907504538 54 0 15584542718632709463 19 1 2151387765439259665 41 1 15099291996319444694 40 ...
output:
1423325416659742802 17371677980372930727 3681232738426467215 13266462173687709877 12639633063779823269 1946619485256865431 12989302207328517036 14138867084917472527 18218337902938347758 3372796243270362661 673871038008779791 9077527952253879051 7326631285358366273 2710349874806590369 172928358344422...
result:
ok 19600 tokens
Test #14:
score: 0
Accepted
time: 4600ms
memory: 36748kb
input:
20000 20000 400 24 38 1 3460586314685566112 26 0 4188084273268315686 61 0 1227557406397452582 25 1 5747999803901747386 41 1 1907261769878407698 27 0 16752772615002344376 34 0 17112817990633067537 60 0 9291256903378353577 45 0 7510343555807629464 13 0 18007693761515887577 9 1 17317953029923040761 4 0...
output:
13100999329968562920 15516017614708332089 5382331705592343945 357522576585990254 16311520569626827168 6758986479859611544 12732461424037837989 8966988217248420501 10391550114259677068 4660694210255306341 7237506373169380284 13657244350225493605 6916780657676036471 10881113620462446827 16277857127600...
result:
ok 19600 tokens
Test #15:
score: 0
Accepted
time: 3792ms
memory: 36768kb
input:
20000 20000 400 60 25 1 2719522369398288789 40 1 9400902170286318935 6 1 9521944178235051324 43 0 11768204916287391421 22 0 12726538799306592512 47 1 15759776307217345226 17 1 15438840904724459733 13 0 17863856648581711698 29 1 4032777103500438360 10 0 683992519125165540 26 1 15461667428831774672 14...
output:
412280358023687627 14769812881817125733 18318455003071307239 6658808483284331159 6130439376668456888 1492308137069243960 5853920885317257980 12553163529022332915 7520793755811132601 13993258994649409340 13568418050081351467 12309096149487021368 17899306611786296579 2598853739059100346 14630776750608...
result:
ok 19600 tokens
Test #16:
score: 0
Accepted
time: 3804ms
memory: 36664kb
input:
20000 20000 400 58 17 0 7751036624596546188 29 0 17432650278695392920 63 0 4389503693497138241 24 0 11063030485327807810 45 1 18240337466752243882 59 1 17804018980843534887 60 1 5872699360277748939 21 1 10429471649278268372 27 0 16762274761588446397 54 0 6030940442592696599 19 1 13270942932118095691...
output:
17867517807501868664 7775943633465469655 1824462793515136478 12630456144448858727 16944355600951673184 14837233611662521712 13878709289450326681 13750017221938869139 11379793111096427897 15527971528797740116 5872004578520784281 11280146030218952435 5218412287620909707 15541801824852151484 5650476389...
result:
ok 19600 tokens
Test #17:
score: 0
Accepted
time: 3801ms
memory: 36768kb
input:
20000 20000 400 60 22 0 12707603241789460389 46 0 15086313545825117890 33 0 909121147706895901 59 1 6114670732197551336 41 0 3090389396605293219 63 0 6608018621123394175 38 1 11836608073091750746 14 1 4878457553941336535 5 0 6024711164477768229 25 1 67199414342206654 24 0 1139176812912408779 16 0 12...
output:
11101670153251608253 675780991220106254 15866623643054791619 16323951405331282505 9135544362908319645 7642151295897109981 12351493946367393308 1935066719605622920 7518368202469961257 11600515247827283279 15933103715396571729 13453007077105135208 14727385649041622999 123215011875209372 76221879547507...
result:
ok 19600 tokens
Test #18:
score: 0
Accepted
time: 4798ms
memory: 36664kb
input:
20000 20000 400 57 0 1 16995927798044259033 30 1 4411529108320693455 35 1 14740826024996968953 32 1 14741500464787789772 5 1 13621297821910096766 47 1 1805557230674866983 26 0 1852515218899978614 37 1 14167448543730803554 15 0 8207408801869448845 7 0 2253659179521891807 61 1 1303777112793499927 1 1 ...
output:
14640221015002441272 8108797686286238378 619977752116985977 17860455208859938460 2219391733727955287 17098130710123326231 4643402762732727695 1576822124091279449 2112594951252396904 11012866398108256228 3100264803360198048 1520325785935749501 17234063909328734373 2294517371241459639 6577965043160831...
result:
ok 19600 tokens
Test #19:
score: 0
Accepted
time: 4799ms
memory: 36812kb
input:
20000 20000 400 60 23 1 12967402093469929995 29 0 12482782180176810891 47 1 17290909632526370536 5 0 17372530581982291607 62 1 13987764289696466564 41 1 8421162609706963610 53 0 18089202028338115523 10 0 1312033850971950221 2 0 3337291528457528731 18 1 17751876270582349954 32 0 13359684730271699557 ...
output:
8219634040467306280 7488593258162917054 3429645423088159837 13823280993584110417 4972072459402131521 8504404100763034378 5815021261728531941 5670841473953742448 6721982245071008063 8353993923949852878 4277531481899017404 5173775653727609205 4061296038432070306 11044359884601198871 272114767395246212...
result:
ok 19600 tokens
Test #20:
score: 0
Accepted
time: 4789ms
memory: 36784kb
input:
20000 20000 400 56 3 0 14386867255986651070 17 1 5876678743420202175 24 0 2472800002233203764 40 0 3974575279492546522 5 1 10323896862538344788 31 0 15302550669828857297 10 0 8188514003112427229 28 0 9350793473465284653 34 1 1051624389221640716 56 1 12992224832956122800 0 1 12521917684359350214 33 1...
output:
16023098103166573969 5488057777512126106 2364974952009032490 6867156023979603961 13898097818261510588 3896697852262723116 13075557814956081246 550932186457628322 1501306951093128873 12801415593941350129 12431218450278358855 8287212554931924015 7521994383511852994 7781645210267880075 1658905057583045...
result:
ok 19600 tokens
Extra Test:
score: 0
Extra Test Passed