QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#346831#8327. 积性函数求和 $10^{13}$ 方便 FFT 版FRRE 18559ms1839140kbC++2333.2kb2024-03-09 01:48:422024-03-09 01:48:43

Judging History

你现在查看的是测评时间为 2024-03-09 01:48:43 的历史记录

  • [2024-03-09 02:35:14]
  • 管理员手动重测本题所有提交记录
  • 测评结果:RE
  • 用时:0ms
  • 内存:0kb
  • [2024-03-09 02:29:28]
  • 管理员手动重测本题所有提交记录
  • 测评结果:85.714286
  • 用时:19517ms
  • 内存:1835116kb
  • [2024-03-09 01:48:43]
  • 评测
  • 测评结果:85.714286
  • 用时:18559ms
  • 内存:1839140kb
  • [2024-03-09 01:48:42]
  • 提交

answer

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <functional>
#include <numeric>
#include <vector>

typedef unsigned int uint;
typedef long long int int64;
typedef long long unsigned int uint64;

inline uint _udiv64(uint64 u, uint v)
{
	uint u0 = u, u1 = u >> 32;
	uint q, r;
	__as\
m__("divl %[v]" : "=a"(q), "=d"(r) : [v] "r"(v), "a"(u0), "d"(u1));
	return q;
}

inline uint64 inv64(uint64 x)
{
	uint64 r = x;
	for (int i = 1; i < 6; ++i)
		r -= (x * r - 1) * r;
	return r;
}

constexpr uint Max_size = 1 << 26 | 5;
constexpr uint Mod = 469762049;
constexpr uint g = 3;

inline uint norm_2(const uint x)
{
	return x < Mod * 2 ? x : x - Mod * 2;
}

inline constexpr uint norm(const uint x)
{
	return x < Mod ? x : x - Mod;
}

struct Z
{
	uint v;
	Z() { }
	constexpr Z(const uint _v) : v(_v) { }
};

inline constexpr Z operator+(const Z x1, const Z x2) { return norm(x1.v + x2.v); }
inline constexpr Z operator-(const Z x1, const Z x2) { return norm(x1.v + Mod - x2.v); }
inline constexpr Z operator-(const Z x) { return x.v ? Mod - x.v : 0; }
inline constexpr Z operator*(const Z x1, const Z x2) { return static_cast<uint64>(x1.v) * x2.v % Mod; }
inline Z &operator+=(Z &x1, const Z x2) { return x1 = x1 + x2; }
inline Z &operator-=(Z &x1, const Z x2) { return x1 = x1 - x2; }
inline Z &operator*=(Z &x1, const Z x2) { return x1 = x1 * x2; }
inline bool operator==(const Z x1, const Z x2) { return x1.v == x2.v; }
inline bool operator!=(const Z x1, const Z x2) { return x1.v != x2.v; }

inline Z Power(Z Base, int Exp)
{
	Z res = 1;
	for (; Exp; Base *= Base, Exp >>= 1)
		if (Exp & 1)
			res *= Base;
	return res;
}

inline Z Inv(const Z x)
{
	return Power(x, Mod - 2);
}

std::pair<Z, Z> sqrt(const Z x)
{
	if (x.v == 0)
		return {0, 0};
	Z w = 1;
	while (Power(w * w - x, (Mod - 1) / 2).v == 1)
		++w.v;
	Z Base0 = w, Base1 = 1;
	w = w * w - x;
	Z res0 = 1, res1 = 0;
	int Exp = (Mod + 1) / 2;
	for (; Exp; std::tie(Base0, Base1) = std::make_pair(Base0 * Base0 + Base1 * Base1 * w, 2 * Base0 * Base1), Exp >>= 1)
		if (Exp & 1)
			std::tie(res0, res1) = std::make_pair(res0 * Base0 + res1 * Base1 * w, res0 * Base1 + Base0 * res1);
	Z res = res0.v < Mod - res0.v ? res0 : Mod - res0;
	return {res, Mod - res};
}

Z inv[Max_size];

void init_inv(const int n)
{
	inv[1] = 1;
	for (int i = 2; i != n; ++i)
		inv[i] = inv[i - 1] * (i - 1);
	Z R = Inv(inv[n - 1] * (n - 1));
	for (int i = n - 1; i != 1; --i)
		inv[i] *= R, R *= i;
}

int size;
uint w[Max_size], w_q[Max_size];

inline uint mult_Shoup_2(const uint x, const uint y, const uint y_q)
{
	uint q = static_cast<uint64>(x) * y_q >> 32;
	return x * y - q * Mod;
}

inline uint mult_Shoup(const uint x, const uint y, const uint y_q)
{
	return norm(mult_Shoup_2(x, y, y_q));
}

inline uint mult_Shoup_q(const uint x, const uint y, const uint y_q)
{
	uint q = static_cast<uint64>(x) * y_q >> 32;
	return q + (x * y - q * Mod >= Mod);
}

void init_w(const int n)
{
	for (size = 2; size < n; size <<= 1)
		;
	uint pr = Power(g, (Mod - 1) / size).v;
	uint pr_q = (static_cast<uint64>(pr) << 32) / Mod;
	uint pr_r = (static_cast<uint64>(pr) << 32) % Mod;
	size >>= 1;
	w[size] = 1, w_q[size] = (static_cast<uint64>(w[size]) << 32) / Mod;
	for (int i = 1; i < size; ++i)
	{
		//w[size + i] = mult_Shoup(w[size + i - 1], pr, pr_q);
		uint x = w[size + i - 1];
		uint64 p = static_cast<uint64>(x) * pr_q;
		uint q = p >> 32;
		w[size + i] = norm(x * pr - q * Mod);
		w_q[size + i] = static_cast<uint>(p) + mult_Shoup_q(pr_r, w[size + i - 1], w_q[size + i - 1]);
	}
	for (int i = size - 1; i; --i)
		w[i] = w[i * 2], w_q[i] = w_q[i * 2];
	size <<= 1;
}

//void DFT_fr_2(Z _A[], const int L)
//{
//	uint *A = reinterpret_cast<uint *>(_A);
//	for (int d = L >> 1; d; d >>= 1)
//		for (int i = 0; i != L; i += d << 1)
//			for (int j = 0; j != d; ++j)
//			{
//				uint x = norm_2(A[i + j] + A[i + d + j]);
//				uint y = mult_Shoup_2(A[i + j] + Mod * 2 - A[i + d + j], w[d + j], w_q[d + j]);
//				A[i + j] = x, A[i + d + j] = y;
//			}
//}
void DFT_fr_2(Z _A[], const int L)
{
	if (L == 1)
		return;
	uint *A = reinterpret_cast<uint *>(_A);
//	auto butterfly1 = [](uint &a, uint &b)
//	{
//		uint x = norm_2(a + b), y = norm_2(a + Mod * 2 - b);
//		a = x, b = y;
//	};
#define butterfly1(a, b)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a + _b), y = norm_2(_a + Mod * 2 - _b);\
		a = x, b = y;\
	} while (0)
	if (L == 2)
	{
		butterfly1(A[0], A[1]);
		return;
	}
//	auto butterfly = [](uint &a, uint &b, const uint _w, const uint _w_q)
//	{
//		uint x = norm_2(a + b), y = mult_Shoup_2(a + Mod * 2 - b, _w, _w_q);
//		a = x, b = y;
//	};
#define butterfly(a, b, _w, _w_q)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a + _b), y = mult_Shoup_2(_a + Mod * 2 - _b, _w, _w_q);\
		a = x, b = y;\
	} while (0)
	if (L == 4)
	{
		butterfly1(A[0], A[2]);
		butterfly(A[1], A[3], w[3], w_q[3]);
		butterfly1(A[0], A[1]);
		butterfly1(A[2], A[3]);
		return;
	}
	for (int d = L >> 1; d != 4; d >>= 1)
		for (int i = 0; i != L; i += d << 1)
			for (int j = 0; j != d; j += 4)
			{
				butterfly(A[i + j + 0], A[i + d + j + 0], w[d + j + 0], w_q[d + j + 0]);
				butterfly(A[i + j + 1], A[i + d + j + 1], w[d + j + 1], w_q[d + j + 1]);
				butterfly(A[i + j + 2], A[i + d + j + 2], w[d + j + 2], w_q[d + j + 2]);
				butterfly(A[i + j + 3], A[i + d + j + 3], w[d + j + 3], w_q[d + j + 3]);
			}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 4]);
		butterfly(A[i + 1], A[i + 5], w[5], w_q[5]);
		butterfly(A[i + 2], A[i + 6], w[6], w_q[6]);
		butterfly(A[i + 3], A[i + 7], w[7], w_q[7]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 2]);
		butterfly(A[i + 1], A[i + 3], w[3], w_q[3]);
		butterfly1(A[i + 4], A[i + 6]);
		butterfly(A[i + 5], A[i + 7], w[3], w_q[3]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 1]);
		butterfly1(A[i + 2], A[i + 3]);
		butterfly1(A[i + 4], A[i + 5]);
		butterfly1(A[i + 6], A[i + 7]);
	}
#undef butterfly1
#undef butterfly
}

void DFT_fr(Z _A[], const int L)
{
	DFT_fr_2(_A, L);
	for (int i = 0; i != L; ++i)
		_A[i] = norm(_A[i].v);
}

//void IDFT_fr(Z _A[], const int L)
//{
//	uint *A = reinterpret_cast<uint *>(_A);
//	for (int d = 1; d != L; d <<= 1)
//		for (int i = 0; i != L; i += d << 1)
//			for (int j = 0; j != d; ++j)
//			{
//				uint x = norm_2(A[i + j]);
//				uint t = mult_Shoup_2(A[i + d + j], w[d + j], w_q[d + j]);
//				A[i + j] = x + t, A[i + d + j] = x + Mod * 2 - t;
//			}
//	std::reverse(A + 1, A + L);
//	if (L == 2)
//		A[0] = norm_2(A[0]), A[1] = norm_2(A[1]);
//	int k = __builtin_ctz(L);
//	for (int i = 0; i != L; ++i)
//	{
//		uint64 m = -A[i] & (L - 1);
//		A[i] = norm((A[i] + m * Mod) >> k);
//	}
//}
void IDFT_fr(Z _A[], const int L)
{
	if (L == 1)
		return;
	uint *A = reinterpret_cast<uint *>(_A);
//	auto butterfly1 = [](uint &a, uint &b)
//	{
//		uint x = norm_2(a), t = norm_2(b);
//		a = x + t, b = x + Mod * 2 - t;
//	};
#define butterfly1(a, b)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a), t = norm_2(_b);\
		a = x + t, b = x + Mod * 2 - t;\
	} while (0)
	if (L == 2)
	{
		butterfly1(A[0], A[1]);
		A[0] = norm(norm_2(A[0])), A[0] = A[0] & 1 ? A[0] + Mod : A[0], A[0] /= 2;
		A[1] = norm(norm_2(A[1])), A[1] = A[1] & 1 ? A[1] + Mod : A[1], A[1] /= 2;
		return;
	}
//	auto butterfly = [](uint &a, uint &b, const uint _w, const uint _w_q)
//	{
//		uint x = norm_2(a), t = mult_Shoup_2(b, _w, _w_q);
//		a = x + t, b = x + Mod * 2 - t;
//	};
#define butterfly(a, b, _w, _w_q)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a), t = mult_Shoup_2(_b, _w, _w_q);\
		a = x + t, b = x + Mod * 2 - t;\
	} while (0)
	if (L == 4)
	{
		butterfly1(A[0], A[1]);
		butterfly1(A[2], A[3]);
		butterfly1(A[0], A[2]);
		butterfly(A[1], A[3], w[3], w_q[3]);
		std::swap(A[1], A[3]);
		for (int i = 0; i != L; ++i)
		{
			uint64 m = -A[i] & 3;
			A[i] = norm((A[i] + m * Mod) >> 2);
		}
		return;
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 1]);
		butterfly1(A[i + 2], A[i + 3]);
		butterfly1(A[i + 4], A[i + 5]);
		butterfly1(A[i + 6], A[i + 7]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 2]);
		butterfly(A[i + 1], A[i + 3], w[3], w_q[3]);
		butterfly1(A[i + 4], A[i + 6]);
		butterfly(A[i + 5], A[i + 7], w[3], w_q[3]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 4]);
		butterfly(A[i + 1], A[i + 5], w[5], w_q[5]);
		butterfly(A[i + 2], A[i + 6], w[6], w_q[6]);
		butterfly(A[i + 3], A[i + 7], w[7], w_q[7]);
	}
	for (int d = 8; d != L; d <<= 1)
		for (int i = 0; i != L; i += d << 1)
			for (int j = 0; j != d; j += 4)
			{
				butterfly(A[i + j + 0], A[i + d + j + 0], w[d + j + 0], w_q[d + j + 0]);
				butterfly(A[i + j + 1], A[i + d + j + 1], w[d + j + 1], w_q[d + j + 1]);
				butterfly(A[i + j + 2], A[i + d + j + 2], w[d + j + 2], w_q[d + j + 2]);
				butterfly(A[i + j + 3], A[i + d + j + 3], w[d + j + 3], w_q[d + j + 3]);
			}
#undef butterfly1
#undef butterfly
	std::reverse(A + 1, A + L);
	int k = __builtin_ctz(L);
	for (int i = 0; i != L; ++i)
	{
		uint64 m = -A[i] & (L - 1);
		A[i] = norm((A[i] + m * Mod) >> k);
	}
}

struct DS
{
	static uint64 N;
	static int R2;
	
	std::vector<Z> sv;
	std::vector<Z> lv;
	
	DS() : sv(1 + R2, 0), lv(1 + R2, 0) { }
	
	Z &operator[](const uint64 x)
	{
		return x <= R2 ? sv[x] : lv[N / x];
	}
	
	const Z &operator[](const uint64 x) const
	{
		return x <= R2 ? sv[x] : lv[N / x];
	}
	
	void partial_sum()
	{
		for (int i = 2; i <= R2; ++i)
			sv[i] += sv[i - 1];
		lv[R2] += sv[R2];
		for (int i = R2 - 1; i >= 1; --i)
			lv[i] += lv[i + 1];
	}
	
	void adjacent_difference()
	{
		for (int i = 1; i < R2; ++i)
			lv[i] -= lv[i + 1];
		lv[R2] -= sv[R2];
		for (int i = R2; i >= 2; --i)
			sv[i] -= sv[i - 1];
	}
};
uint64 DS::N;
int DS::R2;

inline void add(Z &x, const uint a, const uint b)
{
	x = (x.v + 1ULL * a * b) % Mod;
}
inline void add(Z &x, const Z a, const uint b) { add(x, a.v, b); }
inline void add(Z &x, const Z a, const Z b) { add(x, a.v, b.v); }
inline void sub(Z &x, const Z a, const Z b) { add(x, a.v, Mod - b.v); }

template<typename I>
struct subrange
{
	I i, s;
	
	subrange(I _i, I _s) : i(_i), s(_s) { }
	
	const I &begin() const { return i; }
	const I &end() const { return s; }
	bool empty() const { return i == s; }
	auto size() const { return s - i; }
};

DS mult_sparse(const DS &a, const DS &b)
{
	const uint64 &N = DS::N;
	const int &R2 = DS::R2;
	
	DS res;
	
	auto s1 = [](const DS &ds) -> std::vector<std::pair<int, Z>>
	{
		std::vector<std::pair<int, Z>> vec;
		for (int i = 1; i <= R2; ++i)
			if (ds.sv[i] != ds.sv[i - 1])
				vec.emplace_back(i, ds.sv[i] - ds.sv[i - 1]);
		vec.emplace_back(R2 + 1, 0);
		return vec;
	};
	
	auto s2 = [&res](const int x, const Z y, const std::vector<std::pair<int, Z>> &p, const int r)
	{
		int i = 0;
		for (const int X = R2 / x; i != r && p[i].first <= X; ++i)
			add(res.sv[x * p[i].first], y, p[i].second);
		for (const uint64 Nx = N / x; i != r; ++i)
			add(res.lv[_udiv64(Nx, p[i].first)], y, p[i].second);
	};
	
	auto s3 = [&res](const int x, const Z y, int i, const DS &ds)
	{
		const uint64 Nx = N / x;
		for (int X = R2 / x; i > X; --i)
			add(res.lv[i], y, ds.sv[_udiv64(Nx, i)]);
		for (; i >= 1; --i)
			add(res.lv[i], y, ds.lv[x * i]);
	};

	const auto pa = s1(a);
	// const auto va = std::ranges::subrange(pa.begin(), pa.end() - 1);
	const auto va = subrange(pa.begin(), pa.end() - 1);
	const auto pb = s1(b);
	// const auto vb = std::ranges::subrange(pb.begin(), pb.end() - 1);
	const auto vb = subrange(pb.begin(), pb.end() - 1);
	
	for (int l = 0, r = va.size(); const auto &[x, y] : vb)
	{
		const uint64 Nx = N / x;
		while (r && Nx / pa[r - 1].first < r - 1)
			--r;
		s2(x, y, pa, r);
		if (r)
			sub(res[1ULL * x * pa[r].first], y, a.sv[pa[r - 1].first]);
	}
	for (const auto &[x, y] : va)
	{
		sub(res.lv[_udiv64(R2, x)], y, b.sv[R2]);
	}
	
	res.partial_sum();
	
	for (int l = 0, r = va.size(); const auto &[x, y] : vb)
	{
		const uint64 Nx = N / x;
		while (r && Nx / pa[r - 1].first < r - 1)
			--r;
		s3(x, y, _udiv64(Nx, pa[r].first), a);
	}
	for (const auto &[x, y] : va)
	{
		for (int j = 1; x * j <= R2; ++j)
			add(res.lv[j], y, b.lv[x * j]);
	}
	return res;
}

#include <bits/stdc++.h>

std::ostream &operator<<(std::ostream &os, const Z x)
{
	if (x.v <= Mod / 2)
		return os << x.v;
	else
		return os << int(x.v - Mod);
}

int ok, exact, dfscnt;

DS calc(const uint64 N, const Z A, const Z B)
{
	DS::N = N;
	const int R2 = std::sqrt(N + 0.5);
	DS::R2 = R2;
	if (N == 0)
		return DS();
	if (N == 1)
	{
		DS ds;
		ds.sv[1] = ds.lv[1] = 1;
		return ds;
	}
	if (N == 2)
	{
		DS ds;
		ds.sv[1] = 1;
		ds.lv[1] = 4;
		return ds;
	}
	if (N == 3)
	{
		DS ds;
		ds.sv[1] = 1;
		ds.lv[1] = 6;
		return ds;
	}
	
	const int R4 = std::sqrt(R2 + 0.5);
	const int MaxSP = std::max<int>(2, 16 * std::log((long double)(N)));
	
	std::vector<char> pf(1 + R2);
	std::vector<int> P;
	int L = -1;
	
	for (int p = 2; p <= R2; ++p)
		if (!pf[p])
		{
			if (L == -1 && p > MaxSP)
				L = P.size();
			if (p <= R4)
				for (int j = p * p; j <= R2; j += p)
					pf[j] = 1;
			P.push_back(p);
		}
	if (L == -1)
		L = P.size();
	
	auto attach_powerful = [&](DS &ds, const std::function<Z (uint64, uint, uint)> &f) -> DS & // `ds` is the `DS` of `f` without powerful
	{
		DS powerful;
		auto gen = [&](int i, const uint64 x, const Z y)
		{
			auto gen_rec = [&](const auto &self, int i, const uint64 x, const Z y) -> void
			{
				powerful[x] += y;
				for (; i != P.size() && 1ULL * P[i] * P[i] <= N / x; ++i)
				{
					const uint64 Nx = N / x;
					const int p = P[i];
					const Z fp = f(p, p, 1);
					// assert(fp == ds.sv[p] - ds.sv[p - 1]);
					uint64 pe = 1ULL * p * p;
					Z fpe = 0;
					for (int e = 2; pe <= Nx; pe *= p, ++e)
					{
						fpe = f(pe, p, e) - fpe * fp;
						if (fpe.v)
							self(self, i + 1, x * pe, y * fpe);
					}
				}
			};
			return gen_rec(gen_rec, i, x, y);
		};
		gen(0, 1, 1);
		powerful.partial_sum();
		return ds = mult_sparse(ds, powerful);
	};
	
	auto fix_powerful = [&](DS &ds, const std::function<Z (uint64, uint, uint)> &f, const std::function<Z (uint64, uint, uint)> &now) -> DS &
	{
		DS powerful;
		auto gen = [&](int i, const uint64 x, const Z y)
		{
			auto gen_rec = [&](const auto &self, int i, const uint64 x, const Z y) -> void
			{
				powerful[x] += y;
				for (; i != P.size() && 1ULL * P[i] * P[i] <= N / x; ++i)
				{
					const uint64 Nx = N / x;
					const int p = P[i];
					Z fp[55] = {1, 0};
					Z nowp[55] = {1, now(p, p, 1)};
					// assert(f(p, p, 1) == ds.sv[p] - ds.sv[p - 1]);
					// assert(f(p, p, 1) == nowp[1]);
					uint64 pe = 1ULL * p * p;
					for (int e = 2; pe <= Nx; pe *= p, ++e)
					{
						fp[e] = f(pe, p, e);
						nowp[e] = now(pe, p, e);
						for (int ee = 0; ee < e; ++ee)
							fp[e] -= fp[ee] * nowp[e - ee];
						if (fp[e].v)
							self(self, i + 1, x * pe, y * fp[e]);
					}
				}
			};
			return gen_rec(gen_rec, i, x, y);
		};
		gen(0, 1, 1);
		powerful.partial_sum();
		return ds = mult_sparse(ds, powerful);
	};
	
	auto mult_powerful = [&](const DS &ds, const std::function<Z (uint64, uint, uint)> &f) // `ds` is the `DS` of another function
	{
		DS powerful;
		auto gen = [&](int i, const uint64 x, const Z y)
		{
			auto gen_rec = [&](const auto &self, int i, const uint64 x, const Z y) -> void
			{
				powerful[x] += y;
				for (; i != P.size() && 1ULL * P[i] * P[i] <= N / x; ++i)
				{
					const uint64 Nx = N / x;
					const int p = P[i];
					uint64 pe = 1ULL * p * p;
					for (int e = 2; pe <= Nx; pe *= p, ++e)
					{
						Z fpe = f(pe, p, e);
						if (fpe.v)
							self(self, i + 1, x * pe, y * fpe);
					}
				}
			};
			return gen_rec(gen_rec, i, x, y);
		};
		gen(0, 1, 1);
		powerful.partial_sum();
		return mult_sparse(ds, powerful);
	};
	
	auto attach_small = [&](DS &ds, const std::function<Z (uint)> &f) -> DS & // no small p in `ds`!
	{
		ds.adjacent_difference();
		std::vector<int> pred(1 + R2 + 1);
		pred[1] = 0;
		for (int i = 2; i <= R2 + 1; ++i)
			pred[i] = ds.sv[i - 1].v ? i - 1 : pred[i - 1];
		for (int pid = L - 1; pid >= 0; --pid)
		{
			const int p = P[pid];
			Z y = f(p);
			{
				int j = 1, k = p;
				for (; (j + 1) * p - 1 <= R2; ++j)
					for (; k != (j + 1) * p; ++k)
						if (ds.lv[k].v)
							add(ds.lv[j], ds.lv[k], y);
				for (; k <= R2; ++k)
					if (ds.lv[k].v)
						add(ds.lv[j], ds.lv[k], y);
			}
			{
				int j = pred[R2 + 1];
				uint64 Nx = N / p;
				for (int X = R2 / p; j > X; j = pred[j])
					add(ds.lv[_udiv64(Nx, j)], ds.sv[j], y);
				int k = R2 + 1;
				for (; j; j = pred[j])
				{
					while (pred[k] > j * p)
						k = pred[k];
					// assert(k != j * p);
					pred[j * p] = pred[k], pred[k] = j * p;
					add(ds.sv[j * p], ds.sv[j], y);
				}
			}
		}
		ds.partial_sum();
		return ds;
	};
	
	auto eliminate_small = [&](DS &ds, const std::function<Z (uint)> &f) // no small p in `ds * f`
	{
		ds.adjacent_difference();
		std::vector<int> succ(1 + R2 + 1);
		succ[R2] = R2 + 1;
		for (int i = R2 - 1; i >= 0; --i)
			succ[i] = ds.sv[i + 1].v ? i + 1 : succ[i + 1];
		for (int pid = L - 1; pid >= 0; --pid)
		{
			const int p = P[pid];
			Z y = f(p);
			{
				int j = succ[0], k = succ[0];
				for (int X = R2 / p; j <= X; j = succ[j])
				{
					sub(ds.sv[j * p], ds.sv[j], y);
					while (succ[k] < j * p)
						k = succ[k];
					// assert(succ[k] == j * p);
					succ[k] = succ[j * p];
				}
				for (uint64 Nx = N / p; j <= R2; j = succ[j])
					sub(ds.lv[_udiv64(Nx, j)], ds.sv[j], y);
			}
			{
				int j = R2 / p, k = R2;
				for (; j; --j)
					for (; k >= j * p; --k)
						if (ds.lv[k].v)
							sub(ds.lv[j], ds.lv[k], y);
			}
		}
		ds.partial_sum();
		return ds;
	};
	
	auto attach_small_inv = [&](DS &ds, const std::function<Z (uint)> &f) -> DS & // no small p in `ds`! // 未经测试
	{
		ds.adjacent_difference();
		std::vector<int> succ(1 + R2 + 1);
		succ[R2] = R2 + 1;
		for (int i = R2 - 1; i >= 0; --i)
			succ[i] = ds.sv[i + 1].v ? i + 1 : succ[i + 1];
		for (int pid = 0; pid < L; ++pid)
		{
			const int p = P[pid];
			Z y = f(p);
			{
				int j = succ[0], k = succ[0];
				for (int X = R2 / p; j <= X; j = succ[j])
				{
					sub(ds.sv[j * p], ds.sv[j], y);
					while (succ[k] < j * p)
						k = succ[k];
					// assert(succ[k] != j * p);
					succ[j * p] = succ[k], succ[k] = j * p;
				}
				for (uint64 Nx = N / p; j <= R2; j = succ[j])
					sub(ds.lv[_udiv64(Nx, j)], ds.sv[j], y);
			}
			{
				int j = R2 / p, k = R2;
				for (; j; --j)
					for (; k >= j * p; --k)
						if (ds.lv[k].v)
							sub(ds.lv[j], ds.lv[k], y);
			}
		}
		ds.partial_sum();
		return ds;
	};
	
	auto eliminate_small_inv = [&](DS &ds, const std::function<Z (uint)> &f) // no small p in `res / f`!
	{
		ds.adjacent_difference();
		std::vector<int> pred(1 + R2 + 1);
		pred[1] = 0;
		for (int i = 2; i <= R2 + 1; ++i)
			pred[i] = ds.sv[i - 1].v ? i - 1 : pred[i - 1];
		for (int pid = 0; pid < L; ++pid)
		{
			const int p = P[pid];
			Z y = f(p);
			{
				int j = 1, k = p;
				for (; (j + 1) * p - 1 <= R2; ++j)
					for (; k != (j + 1) * p; ++k)
						if (ds.lv[k].v)
							add(ds.lv[j], ds.lv[k], y);
				for (; k <= R2; ++k)
					if (ds.lv[k].v)
						add(ds.lv[j], ds.lv[k], y);
			}
			{
				int j = pred[R2 + 1];
				uint64 Nx = N / p;
				for (int X = R2 / p; j > X; j = pred[j])
					add(ds.lv[_udiv64(Nx, j)], ds.sv[j], y);
				int k = R2 + 1;
				for (; j; j = pred[j])
				{
					while (pred[k] > j * p)
						k = pred[k];
					// assert(pred[k] == j * p);
					pred[k] = pred[j * p];
					add(ds.sv[j * p], ds.sv[j], y);
				}
			}
		}
		ds.partial_sum();
		return ds;
	};
	
	const int S = [&]()
	{
		int S = 1 + R2 / std::sqrt(std::log((long double)(N))) / 2;
		
		auto Fslog = [&S](const uint64 i) -> int { return S * std::log((long double)(i)); };
		
		for (int U = 1 << (1 + std::__lg(Fslog(N))); ++S, Fslog(N) < U; )
			;
		--S;
		
		return S;
	}();
	const int NS = (N + S - 1) / S;
	const int pfc = [&]()
	{
		int c = 0;
		uint64 x = 1;
		for (int i = L; i != P.size(); ++i)
		{
			x *= P[i];
			if (x > N)
				break;
			++c;
		};
		return c;
	}();
	std::cerr << "N MaxSP L S NS pfc (" << double(clock()) / CLOCKS_PER_SEC << "): " << N << ' ' << MaxSP << ' ' << L << ' ' << S << ' ' << NS << ' ' << pfc << std::endl;
	
	auto Cslog = [&S](const uint64 i) -> int { return std::ceil(S * std::log((long double)(i))); };
	auto Fslog = [&S](const uint64 i) -> int { return S * std::log((long double)(i)); };
	
	std::vector<int> scslogp(1 + R2, 0);
	for (auto p : P)
	{
		const int slogp = Cslog(p);
		for (int i = 1; i * p <= R2; ++i)
		{
			scslogp[i * p] += slogp;
			for (int x = i; x % p == 0; x /= p)
				scslogp[i * p] += slogp;
		}
	}
	std::vector<int> lfslog(1 + R2 + 1);
	for (int i = 1; i <= R2; ++i)
		lfslog[i] = Fslog(N / i);
	lfslog[R2 + 1] = -1;
	
	init_w(lfslog[1]);
	init_inv(size);
	
	const int len = lfslog[1] + 1;
	const int slen = (len + 1) >> 1;
	std::cerr << "len slen size (" << double(clock()) / CLOCKS_PER_SEC << "): " << len << ' ' << slen << ' ' << size << std::endl;
	
	std::vector<int> lid(size);
	for (int i = 1; i <= R2; ++i)
		for (int j = lfslog[i]; j > lfslog[i + 1]; --j)
			lid[j] = i;
	std::cerr << "pre 0 (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
	
	int maxR2error = [&]()
	{
		int c = 0;
		{
			uint64 x = 1;
			for (int i = L; i != P.size(); ++i)
			{
				x *= P[i];
				if (x > R2)
					break;
				++c;
			};
		}
		int x = R2;
		while (Cslog(x) > lfslog[R2] - c)
			--x;
		assert(Cslog(N / (N / (x + 1) + 1)) <= lfslog[R2] - c);
		return N / (x + 1) + 1;
	}();
	std::cerr << "pre 1 (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
	
	const uint64 ll = std::max<int64>(1LL, N - NS * pfc + 1);
	const int fixl = N - ll;
	std::vector<uint64> rx(fixl + 1);
	for (uint64 i = ll; i <= N; ++i)
		rx[i - ll] = i;
	std::cerr << "pre 2 (" << double(clock()) / CLOCKS_PER_SEC << "): " << fixl << std::endl;
	/*
	N MaxSP L S NS pfc (0.002): 992802097447 441 85 151836 6538648 4
	len slen size (0.094): 4194287 2097144 4194304
	pre 0 (0.098)
	pre 1 (0.099)
	pre 2 (0.164): 26154592
	pre 3 (0.52): 21229213
	pre done (0.853)
	*/
	std::vector<int> cur(fixl + 1 + 1);
	std::vector<int> ps;
	{
		for (int pid = L; pid < P.size(); ++pid)
		{
			const int p = P[pid];
			const uint64 ip = inv64(p);
			for (int i = ((ll - 1) / p + 1) * p - ll; i <= fixl; i += p)
			{
				rx[i] *= ip;
				++cur[i];
			}
		}
		std::partial_sum(cur.begin(), cur.end(), cur.begin());
		ps.resize(cur.back());
		std::cerr << "pre 3 (" << double(clock()) / CLOCKS_PER_SEC << "): " << cur.back() << std::endl;
		for (int pid = L; pid < P.size(); ++pid)
		{
			const int p = P[pid];
			for (int i = ((ll - 1) / p + 1) * p - ll; i <= fixl; i += p)
				ps[--cur[i]] = p;
		}
		for (int i = 0; i <= fixl; ++i)
			std::reverse(ps.begin() + cur[i], ps.begin() + cur[i + 1]);
		std::cerr << "pre done (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
	}
	/*/
	const int pfcnt = [&]()
	{
		int cnt = 0;
		for (auto p : P)
			if (p > MaxSP)
				cnt += N / p - (ll - 1) / p;
		return cnt;
	}();
	std::vector<int> cur(fixl + 1 + 1);
	std::vector<int> ps = [&]()
	{
		std::vector<std::pair<int, int>> _ps;
		_ps.reserve(pfcnt);
		std::vector<int> _ps_first(fixl + 1, -1);
		for (int pid = L; pid < P.size(); ++pid)
		{
			int p = P[pid];
			uint64 ip = inv64(p);
			for (int i = ((ll - 1) / p + 1) * p - ll; i <= fixl; i += p)
			{
				rx[i] *= ip;
				_ps.emplace_back(p, _ps_first[i]);
				_ps_first[i] = _ps.size() - 1;
			}
		}
		std::cerr << "pre 3 (" << double(clock()) / CLOCKS_PER_SEC << "): " << pfcnt << std::endl;
		std::vector<int> res(pfcnt);
		cur[0] = 0;
		for (int i = 0; i <= fixl; ++i)
		{
			cur[i + 1] = cur[i];
			for (int k = _ps_first[i]; k != -1; k = _ps[k].second)
				ps[cur[i + 1]++] = _ps[k].first;
		}
		return res;
	}();
	std::cerr << "pre done (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
	/**/
	
	auto calc_medium = [&](const std::function<Z (uint)> &f)
	{
		std::cerr << "cm (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
		
		Z *df = new Z[size];
		Z *_ef = new Z[1 + R2];
		Z *_ief = new Z[1 + R2];
		
		_ef[0] = 0;
		std::fill(_ef + 1, _ef + 1 + R2, 1);
		_ief[0] = 0;
		std::fill(_ief + 1, _ief + 1 + R2, 1);
		std::fill(df, df + size, 0);
		
		for (const auto p : P)
		{
			const Z fp = p <= MaxSP ? 0 : f(p);
			
			for (int i = 1; i * p <= R2; ++i)
			{
				int e = 1;
				for (int x = i; x % p == 0; x /= p)
					++e;
				if (e == 1)
					_ef[i * p] *= fp;
				else
					_ef[i * p] = 0;
				_ief[i * p] *= Power(-fp, e);
			}
			
			int e = 1;
			Z slogp_fpe = scslogp[p] * fp;
			for (; scslogp[p] * e < len; ++e, slogp_fpe *= fp)
			{
				if (e & 1)
					df[scslogp[p] * e] += slogp_fpe;
				else
					df[scslogp[p] * e] -= slogp_fpe;
			}
		}
		
		Z *exp = new Z[size];
		Z *dexp = new Z[size];
		Z *iexp = new Z[size];
		
		std::fill(exp, exp + size, 0);
		std::fill(dexp, dexp + size, 0);
		std::fill(iexp, iexp + size, 0);
		
		for (int i = 1; i <= R2; ++i)
			if (scslogp[i] < slen)
			{
				exp[scslogp[i]] += _ef[i];
				dexp[scslogp[i]] += _ef[i] * scslogp[i];
				iexp[scslogp[i]] += _ief[i];
			}
		delete[] _ief;
		
		const std::vector<Z> _exp(exp, exp + slen);
		
		DFT_fr(exp, size);
		DFT_fr(dexp, size);
		DFT_fr(iexp, size);
		
		Z *res = new Z[size];
		std::copy(df, df + slen, res);
		std::fill(res + slen, res + size, 0);
		
		DFT_fr(res, size);
		
		for (int i = 0; i < size; ++i)
			res[i] = iexp[i] * (dexp[i] - exp[i] * res[i]);
		delete[] dexp;
		delete[] iexp;
		
		IDFT_fr(res, size);
		
		std::fill(res, res + slen, 0);
		for (int i = slen; i < len; ++i)
			res[i] = (res[i] - df[i]) * inv[i];
		std::fill(res + len, res + size, 0);
		delete[] df;
		
		DFT_fr(res, size);
		
		for (int i = 0; i < size; ++i)
			res[i] *= exp[i];
		
		delete[] exp;
		
		IDFT_fr(res, size);
		
		for (int i = 0; i < slen; ++i)
			res[i] = _exp[i];
		for (int i = slen; i < len; ++i)
			res[i] = -res[i];
		std::cerr << "cm fft done (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
		
		DS r;
		std::copy(_ef, _ef + 1 + R2, r.sv.begin());
		delete[] _ef;
		for (int i = 0; i < len; ++i)
			if (lid[i])
				r.lv[lid[i]] += res[i];
		delete[] res;
		
		for (int i = 1; i <= R2; ++i)
			r.lv[R2] -= r.sv[i];
		
		assert(static_cast<uint64>(NS) * pfc <= N);
		
		/*
		MaxSP = std::max<int>(2, 16 * std::log((long double)(N)));
		S = 1 + R2 / std::sqrt(std::log((long double)(N))) / 2;
		n = 992802097447;
		=> 7014438 6708270 17730141 ; 7014438 6708270 0
		*/
		auto dfs = [&](const uint64 i, const int c)
		{
			const int curi = cur[i - ll];
			auto dfs_rec = [&](const auto &self, int n, int c, int sslogp, uint64 t, uint64 x, Z fx)
			{
				if (c > n)
					return;
				if (n == 0)
				{
					if ((t + 1) * x > N) // (N / x == t)
					{
						int tt = std::min<uint64>(t, R2);
						if (tt != lid[sslogp])
						{
							if (sslogp > lfslog[1])
								r.lv[tt] += fx;
							else if (lid[sslogp] != tt)
							{
								r.lv[lid[sslogp]] -= fx;
								r.lv[tt] += fx;
							}
							++ok;
						}
						else
							++exact;
					}
					else
						++dfscnt;
					return;
				}
				--n;
				const int p = ps[curi + n];
				self(self, n, c - 1, sslogp + scslogp[p], t, x * p, fx * f(p));
				self(self, n, c, sslogp, t * p, x, fx);
			};
			dfs_rec(dfs_rec, cur[i - ll + 1] - cur[i - ll], c, 0, rx[i - ll], 1, 1);
		};
		
		for (int c = 1; c <= pfc; ++c)
			for (uint64 i = N - NS * (c - 1); i >= ll && i > N - NS * c; --i)
				dfs(i, c);
		/*/ 待修
		auto dfs = [&](const uint64 i, const int c)
		{
			const int tu = std::min<uint64>(i / (N - i + 1), // 这个限制和上文注释的原始代码中确保每个 x 只枚举一次的判断 (N / x == t) 是等价的
				maxR2error); // x 太小,也就是 i / t 太小,t 太大的话,误差无法影响 lv // 优化效果似乎有限 // 直接用 R2 也没有算错,我蒙古,可能反例需要构造
			// 如果去掉上面的 maxR2error 的话,可能 int 不够存
			if (rx[i - ll] > tu)
				return;
			const int rxi = rx[i - ll];
			const int &curi = cur[i - ll];
			const int ni = cur[i - ll + 1] - cur[i - ll];
			
			if (ni == 1)
			{
				const int p = ps[curi];
				const int slog = scslogp[p];
				const Z fp = f(p); // 只有 p 的贡献可能出了偏差
				if (slog > lfslog[1])
					r.lv[1] += fp;
				else if (std::min(rxi, R2) > lid[slog])
				{
					std::cerr << p << ' ' << rxi << ' ' << R2 << ' '  << lid[slog] << std::endl;
					std::cerr << lfslog[R2] << ' ' << lfslog[R2 - 1] << ' ' << lfslog[R2 - 2] << ' ' << lfslog[R2 - 4] << ' ' << lfslog[1] << std::endl;
					r.lv[lid[slog]] -= fp;
					r.lv[std::min(rxi, R2)] += fp;
					if (rxi > R2)
						std::cerr << "FFFFFFFFF" << std::endl;
				}
				return;
			}
			if (ni == 2) // 单独处理两个素数的情况 不单独处理也不加下面的优化的话好像还更快 我蒙古
			{
				const int p0 = ps[curi], p1 = ps[curi + 1];
				const int slog = scslogp[p0] + scslogp[p1];
				const Z fp = f(p0) * f(p1); // 只有 p0 * p1 的贡献可能出了偏差
				if (slog > lfslog[1])
					r.lv[1] += fp;
				else if (std::min(rxi, R2) > lid[slog])
				{
					r.lv[lid[slog]] -= fp;
					r.lv[std::min(rxi, R2)] += fp;
					if (rxi > R2)
						std::cerr << "FFFFFFFFF" << std::endl;
				}
				return;
			}
			
			// static int ps_slogp[20]; // 这段和下面对应的 if (n != 0 && c == n) 部分好像没什么优化效果,蒙古
			// static Z ps_fp[20];
			// for (int k = 0; k < ni; ++k)
			// 	ps_slogp[k] = scslogp[ps[curi + k]];
			// std::partial_sum(ps_slogp, ps_slogp + ni, ps_slogp);
			// for (int k = 0; k < ni; ++k)
			// 	ps_fp[k] = f(ps[curi + k]);
			// std::partial_sum(ps_fp, ps_fp + ni, ps_fp, std::multiplies<Z>());
			
			auto dfs_rec = [&](const auto &self, int n, int c, int sslogp, int t, Z fx)
			{
				if (c > n)
					return;
				++dfscnt;
				// if (n != 0 && c == n)
				// {
				// 	sslogp += ps_slogp[n - 1];
				// 	fx *= ps_fp[n - 1];
				// 	n = 0;
				// }
				if (n == 0)
				{
					int tt = std::min(t, R2);
					if (tt != lid[sslogp])
					{
						if (sslogp > lfslog[1])
							r.lv[1] += fx;
						else if (lid[sslogp] != tt)
						{
							r.lv[lid[sslogp]] -= fx;
							r.lv[tt] += fx;
						}
						++ok;
					}
					else
						++exact;
					return;
				}
				--n;
				const int p = ps[curi + n];
				self(self, n, c - 1, sslogp + scslogp[p], t, fx * f(p));
				if (static_cast<uint64>(t) * p <= tu)
					self(self, n, c, sslogp, t * p, fx);
			};
			dfs_rec(dfs_rec, ni, c, 0, rxi, 1);
		};
		
		for (int c = 1; c <= pfc; ++c)
			for (uint64 i = N - NS * (c - 1); i >= ll && i > N - NS * c; --i)
				// if (cur[i - ll + 1] - cur[i - ll] > 1)
					dfs(i, c);
		/**/
		r.partial_sum();
		
		std::cerr << "cm done (" << double(clock()) / CLOCKS_PER_SEC << ")" << std::endl;
		return r;
	};
	
	auto calc_large = [&](const std::function<Z (uint64)> &f, const std::function<Z (uint64)> &ps)
	{
		auto fp = [&](uint p) { return f(p); };
		auto fpp = [&](uint64 pe, uint p, uint e) { return f(pe); };
		
		DS ds = calc_medium(fp);
		attach_powerful(attach_small(ds, fp), fpp);
		DS res;
		for (int i = R2; i >= 1; --i)
		{
			Z x = ps(N / i) - ds.lv[i];
			for (int j = 2; i * j <= R2; ++j)
				sub(x, f(j), res.lv[i * j]);
			res.lv[i] = x;
		}
		return res;
	};
	
	auto mult_large = [&](DS &&ds, const DS &l)
	{
		for (int i = 1; i <= R2; ++i)
		{
			Z &x = ds.lv[i];
			for (int j = 1; i * j <= R2; ++j)
				if (ds.sv[j] != ds.sv[j - 1])
					add(x, ds.sv[j] - ds.sv[j - 1], l.lv[i * j]);
		}
		return ds;
	};
	DS l0 = calc_large(
		[&](uint64 n) { return 1; },
		[&](uint64 n) { return Z(n % Mod); }
	);
	DS l1 = calc_large(
		[&](uint64 n) { return Z(n % Mod); },
		[&](uint64 n) { return n %= Mod, Z(n * (n + 1) / 2 % Mod); }
	);
	DS l;
	for (int i = 1; i <= R2; ++i)
		l.lv[i] = A * l0.lv[i] + B * l1.lv[i];
	
	auto fp = [&](uint p) { return A + B * p; };
	auto fpe = [&](uint64 pp, uint p, uint e) { return A * e + B * p; };
	
	DS res = mult_large(calc_medium(fp), l);
	return attach_powerful(attach_small(res, fp), fpe);
}

#include <ctime>

int main(int argc, char **argv)
{
	int T;
	scanf("%u", &T);
	while (T--)
	{
		uint64 n;
		Z a, b;
		
		scanf("%llu %u %u", &n, &a.v, &b.v);
		
		DS ds = calc(n, a, b);
		
		std::vector<Z> res(ds.sv.begin() + 1, ds.sv.end());
		res.insert(res.end(), ds.lv.begin() + 1, ds.lv.end());
		std::sort(res.begin(), res.end(), [](const Z a, const Z b) { return a.v < b.v; });
		res.erase(std::unique(res.begin(), res.end()), res.end());
		uint Ans = 0;
		for (auto x : res)
			Ans ^= x.v;
		printf("%u\n", Ans);
	}
	fprintf(stderr, "%d\n", std::__lg(size));
	fprintf(stderr, "%d %d %d\n", ok, exact, dfscnt);
	fprintf(stderr, "%lf\n", double(clock()) / CLOCKS_PER_SEC);
	
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Runtime Error

input:

10000
988 56395756 60780067
7923 293552717 438195956
4847 24236686 75287211
6694 74889751 64994726
3720 385482711 188638093
6021 2928896 248853035
6808 310612405 330739724
4062 15289930 175596707
9583 56394035 335888448
9798 151396947 371306315
4365 216662501 351771943
1359 165179730 80942360
1436 3...

output:

6702293
422200583
304441446
69351732
421157478
210560518
504474449
12692533
331877891
385355840
275328665
310397326
67866328
533036893
27246365
72866646
467021279
34647362
411996318
297571277
334576259
221391996
496297771
222601160
232748202
470542910
115812226
192533857
361627876
443138779
2575036
...

result:


Test #2:

score: 14.2857
Accepted
time: 676ms
memory: 8732kb

input:

486
685583 192056743 391870214
272484 346225796 149350515
656101 326831808 112167252
22515 203348552 60773766
1633155 194072757 22284059
57727 404929471 327406577
57598 251468713 173130016
1102497 36566124 195330260
3504399 214678339 86082351
360127 323967709 231892988
11663 225570343 56772624
39921...

output:

434223382
116245445
125541760
160318550
446061234
484145141
518392434
81977168
17947265
307371543
407160883
335339263
39598998
470162878
410893643
26179198
26198426
40422957
398293380
265153607
228078198
293572568
155169142
224586788
375283776
8481447
491498721
350950775
534322011
64802753
436909146...

result:

ok 486 numbers

Test #3:

score: 14.2857
Accepted
time: 645ms
memory: 9076kb

input:

351
2069283 349969193 52280365
1407781 304782674 71786142
2619526 356665139 467865678
128394 19761994 158668471
4868626 435554461 55057371
228834 394703499 184531829
516241 188565552 183063603
703082 128264745 446152032
2069281 460231072 101600517
1407654 181732896 221743073
6648661 455206481 450814...

output:

319910185
369336286
50213187
67975443
429652780
316610082
64991059
22778081
332789438
497599689
331161326
417226667
247312840
325206278
489998938
119792359
144611262
188956641
12934607
448204725
376317
505473640
338284847
49730199
138622978
88198200
362403025
187282938
318525939
107779358
59656206
2...

result:

ok 351 numbers

Test #4:

score: 14.2857
Accepted
time: 463ms
memory: 8888kb

input:

333
1016064 204524889 390112646
535822 104757052 269069192
1557487 409444563 74927504
49155 283505698 318482175
6259987 190292359 349969193
112767 52280365 304782674
191842 71786142 356665139
248003 467865678 19761994
1016062 158668471 435554461
535695 55057371 394703499
4848803 184531829 188565552
...

output:

424757689
373968255
24290918
306982012
533936667
401990420
336964323
76114089
369506627
173872187
202999923
155205263
11081034
302738228
265042946
56046100
133964275
12419321
467153573
158929408
51479146
213214379
6763076
305753342
319915377
24381258
425402644
187212393
38116675
255693248
28212987
5...

result:

ok 333 numbers

Test #5:

score: 14.2857
Accepted
time: 18559ms
memory: 1838668kb

input:

1
9994070595599 209907780 360301068

output:

39200515

result:

ok 1 number(s): "39200515"

Test #6:

score: 14.2857
Accepted
time: 18418ms
memory: 1839140kb

input:

1
9999145190306 209907780 360301068

output:

48621786

result:

ok 1 number(s): "48621786"

Test #7:

score: 14.2857
Accepted
time: 16409ms
memory: 1778196kb

input:

1
9483578929763 209907780 360301068

output:

51012486

result:

ok 1 number(s): "51012486"