QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#342374 | #602. 最小费用最大流(随机数据) | Xiaohuba# | 100 ✓ | 219ms | 3904kb | C++23 | 7.9kb | 2024-03-01 10:59:12 | 2024-03-01 10:59:13 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
// #define LOCK_GETCHAR
// #define USE_INT_128
#if __cplusplus < 201400
#warning "Please use c++14 or higher."
#define CONSTEXPR_FUNC
#define ENABLE_IF_INT
#else
#define CONSTEXPR_FUNC constexpr
#define ENABLE_IF_INT , enable_if_t<_is_integer<T>, int> = 0
template <class T> constexpr bool _is_integer = numeric_limits<T>::is_integer;
template <> constexpr bool _is_integer<bool> = false;
template <> constexpr bool _is_integer<char> = false;
#ifdef USE_INT_128
template <> constexpr bool _is_integer<__int128> = true;
template <> constexpr bool _is_integer<__uint128_t> = true;
#endif
template <class T ENABLE_IF_INT>
constexpr T INF = numeric_limits<T>::max() >> 1;
#endif
#if !defined(_WIN32) && !defined(LOCK_GETCHAR)
#define getchar getchar_unlocked
#endif
#define il inline
#define mkp make_pair
#define fi first
#define se second
#define For(i, j, k) for (decltype(j - k) i = (j); i <= (k); ++i) // NOLINT
#define ForDown(i, j, k) for (decltype(j - k) i = (j); i >= (k); --i) // NOLINT
#define pb push_back
#define eb emplace_back
#ifndef ONLINE_JUDGE
#define FileIO(filename) \
freopen(filename ".in", "r", stdin); \
freopen(filename ".out", "w", stdout)
#else
#define FileIO(filename) void(0)
#endif
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using db = double;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
#ifdef USE_INT_128
using lll = __int128_t;
using ulll = __uint128_t;
#endif
// clang-format off
template<typename T> constexpr il T sq(const T &x) {
return x * x;
}
template<typename T> CONSTEXPR_FUNC il void cmin(T &x, const T &y) {
x = min(x, y);
}
template<typename T> CONSTEXPR_FUNC il void cmax(T &x, const T &y) {
x = max(x, y);
}
template<typename T> CONSTEXPR_FUNC il T qpow(T x, ull y, T mod) {
T ans = 1;
x %= mod;
while (y) {
if (y & 1)
(ans *= x) %= mod;
(x *= x) %= mod;
y >>= 1;
}
return ans;
}
template<typename T> CONSTEXPR_FUNC il T qpow(T x, ull y) {
T ans = 1;
while (y) {
if (y & 1)
ans *= x;
x *= x;
y >>= 1;
}
return ans;
}
template<typename T ENABLE_IF_INT> il void read(T &x) {
x = 0;
int f = 1;
int c = getchar();
while (!isdigit(c)) {
if (c == '-')
f = -1;
c = getchar();
}
while (isdigit(c)) {
x = x * 10 + c - '0';
c = getchar();
}
x *= f;
}
template<typename T, typename ... Args> il void read(T &x, Args &... y) {
read(x);
read(y...);
}
// clang-format on
// File head end
class MCMF {
struct Edge {
int v, cap, flow, wi;
Edge() : v(0), cap(0), flow(0), wi(0) {}
Edge(int _v, int _c, int _f, int _w) : v(_v), cap(_c), flow(_f), wi(_w) {}
};
vector<int> H, dis, dep, cur;
vector<vector<int>> G;
vector<Edge> E;
int s, t;
il bool dijkstra() {
static priority_queue<pii, vector<pii>, greater<>> pq;
while (!pq.empty())
pq.pop();
fill(dis.begin(), dis.end(), INF<int>);
pq.emplace(0, s), dis[s] = 0;
while (!pq.empty()) {
auto [di, u] = pq.top();
pq.pop();
if (di != dis[u])
continue;
// cerr << u << '\n';
for (auto i : G[u]) {
int v = E[i].v, w = E[i].wi + H[u] - H[v];
if (E[i].cap > E[i].flow && dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.emplace(dis[v], v);
}
}
}
for (int i = 0; i < H.size(); i++)
H[i] += dis[i];
// cerr << "> " << H[s] << ' ' << H[t] << '\n';
return dis[t] < INF<int>;
}
il bool BFS() {
static queue<int> q;
while (!q.empty())
q.pop();
fill(dep.begin(), dep.end(), -1);
q.emplace(s), dep[s] = 0;
while (!q.empty()) {
int u = q.front();
q.pop();
// cerr << "? " << u << '\n';
for (int i : G[u]) {
int v = E[i].v;
if (E[i].cap > E[i].flow && H[v] == H[u] + E[i].wi && !(~dep[v])) {
dep[v] = dep[u] + 1;
q.emplace(v);
}
}
}
fill(cur.begin(), cur.end(), 0);
return ~dep[t];
}
int DFS(int x, int flow) {
if (x == t || !flow)
return flow;
// cerr << "D " << x << '\n';
int ans = 0;
for (int &i = cur[x]; i < G[x].size(); i++) {
int e = G[x][i], v = E[e].v;
if (E[e].cap > E[e].flow && H[v] == H[x] + E[e].wi &&
dep[v] == dep[x] + 1) {
int fl = DFS(v, min(flow, E[e].cap - E[e].flow));
ans += fl, flow -= fl;
E[e].flow += fl, E[e ^ 1].flow -= fl;
if (!flow)
break;
}
}
return ans;
}
public:
MCMF() = default;
MCMF(int __n) {
resize(__n);
}
il void clear() {
fill(H.begin(), H.end(), 0);
fill(dis.begin(), dis.end(), 0);
fill(dep.begin(), dep.end(), 0);
fill(cur.begin(), cur.end(), 0);
for_each(G.begin(), G.end(), [&](auto & x) {
x.clear();
});
E.clear();
}
il void resize(int __n) {
H.resize(__n), dis.resize(__n), dep.resize(__n), cur.resize(__n),
G.resize(__n);
clear();
}
il void addEdge(int u, int v, int cap, int wi) {
assert(u >= 0 && u < G.size());
assert(v >= 0 && v < G.size());
G[u].eb(E.size()), E.eb(v, cap, 0, wi);
G[v].eb(E.size()), E.eb(u, 0, 0, -wi);
}
il void set_initial_H(int L, int R, int val) {
fill(H.begin() + L, H.begin() + R, val);
}
il vector<int> solve(int __s, int __t, int val_range) {
// cerr << "S " << __s << ' ' << __t << '\n';
s = __s, t = __t;
assert(s >= 0 && s < G.size());
assert(t >= 0 && t < G.size());
vector<int> ans(val_range + 1);
dijkstra();
while (dijkstra()) {
int res = 0;
while (BFS())
res += DFS(s, INF<int>);
ans[H[s] - H[t]] += res;
}
return ans;
}
il pii solve2(int __s, int __t) {
s = __s, t = __t;
assert(s >= 0 && s < G.size());
assert(t >= 0 && t < G.size());
bool qwq = dijkstra();
int flow = 0, cost = 0;
while (dijkstra()) {
int res = 0;
while (BFS())
res += DFS(s, INF<int>);
flow += res, cost += (H[t] - H[s]) * res;
}
return {flow, cost};
}
};
namespace {
int n, m, s, t;
il void Main2() {
read(n, m), s = 2 * n, t = 2 * n + 1;
MCMF solver(2 * n + 2);
For(i, 0, m - 1) {
int u, v, w;
read(u, v, w);
solver.addEdge(u - 1, n + v - 1, 1, -w);
}
For(i, 0, n - 1) solver.addEdge(s, i, 1, 0), solver.addEdge(i + n, t, 1, 0);
auto ans = solver.solve(s, t, 5);
int res = n, tmp = 0;
ForDown(i, 5, 1) while (ans[i]--)
printf("%d\n", (tmp += i)), res--;
while (res--)
printf("%d\n", tmp);
}
il void Main() {
read(n, m), s = 0, t = n - 1;
MCMF solver(n);
For(i, 0, m - 1) {
int u, v, w, c;
read(u, v, c, w);
solver.addEdge(u - 1, v - 1, c, w);
}
auto ans = solver.solve2(s, t);
cout << ans.fi << ' ' << ans.se << '\n';
}
} // namespace
signed main() {
return Main(), 0;
}
詳細信息
Test #1:
score: 10
Accepted
time: 1ms
memory: 3592kb
input:
8 27 2 3 2147483647 100 1 3 1 100 2 4 2147483647 10 1 4 1 10 2 4 2147483647 10 1 4 1 10 2 8 3 0 3 5 2147483647 100 1 5 1 100 3 8 1 0 3 2 2147483647 0 4 5 2147483647 10 1 5 1 10 4 8 1 0 4 2 2147483647 0 5 6 2147483647 1 1 6 1 1 5 6 2147483647 1 1 6 1 1 5 7 2147483647 1 1 7 1 1 5 8 3 0 5 2 2147483647 ...
output:
8 243
result:
ok 2 number(s): "8 243"
Test #2:
score: 10
Accepted
time: 1ms
memory: 3828kb
input:
12 49 2 10 2147483647 5 1 10 1 5 2 5 2147483647 50 1 5 1 50 2 9 2147483647 8 1 9 1 8 2 8 2147483647 47 1 8 1 47 2 11 2147483647 17 1 11 1 17 2 12 5 0 3 12 0 0 3 2 2147483647 0 4 6 2147483647 18 1 6 1 18 4 11 2147483647 12 1 11 1 12 4 9 2147483647 14 1 9 1 14 4 12 3 0 4 2 2147483647 0 5 11 2147483647...
output:
15 436
result:
ok 2 number(s): "15 436"
Test #3:
score: 10
Accepted
time: 1ms
memory: 3644kb
input:
27 169 2 15 2147483647 24 1 15 1 24 2 19 2147483647 96 1 19 1 96 2 12 2147483647 49 1 12 1 49 2 13 2147483647 75 1 13 1 75 2 24 2147483647 2 1 24 1 2 2 27 5 0 3 27 0 0 3 2 2147483647 0 4 11 2147483647 99 1 11 1 99 4 3 2147483647 85 1 3 1 85 4 27 2 0 4 2 2147483647 0 5 27 0 0 5 2 2147483647 0 6 9 214...
output:
60 4338
result:
ok 2 number(s): "60 4338"
Test #4:
score: 10
Accepted
time: 7ms
memory: 3660kb
input:
77 2149 2 42 2147483647 33 1 42 1 33 2 68 2147483647 30 1 68 1 30 2 76 2147483647 13 1 76 1 13 2 51 2147483647 93 1 51 1 93 2 12 2147483647 39 1 12 1 39 2 57 2147483647 74 1 57 1 74 2 70 2147483647 21 1 70 1 21 2 73 2147483647 24 1 73 1 24 2 52 2147483647 54 1 52 1 54 2 15 2147483647 99 1 15 1 99 2 ...
output:
1000 74606
result:
ok 2 number(s): "1000 74606"
Test #5:
score: 10
Accepted
time: 23ms
memory: 3656kb
input:
102 4199 2 48 2147483647 42 1 48 1 42 2 85 2147483647 50 1 85 1 50 2 22 2147483647 83 1 22 1 83 2 95 2147483647 97 1 95 1 97 2 82 2147483647 34 1 82 1 34 2 25 2147483647 72 1 25 1 72 2 4 2147483647 17 1 4 1 17 2 47 2147483647 10 1 47 1 10 2 71 2147483647 12 1 71 1 12 2 68 2147483647 39 1 68 1 39 2 2...
output:
2000 161420
result:
ok 2 number(s): "2000 161420"
Test #6:
score: 10
Accepted
time: 22ms
memory: 3904kb
input:
102 4199 2 79 2147483647 13 1 79 1 13 2 83 2147483647 73 1 83 1 73 2 75 2147483647 90 1 75 1 90 2 30 2147483647 92 1 30 1 92 2 54 2147483647 25 1 54 1 25 2 66 2147483647 53 1 66 1 53 2 52 2147483647 37 1 52 1 37 2 63 2147483647 46 1 63 1 46 2 11 2147483647 20 1 11 1 20 2 55 2147483647 53 1 55 1 53 2...
output:
2000 143072
result:
ok 2 number(s): "2000 143072"
Test #7:
score: 10
Accepted
time: 21ms
memory: 3904kb
input:
102 4199 2 39 2147483647 45 1 39 1 45 2 51 2147483647 11 1 51 1 11 2 86 2147483647 63 1 86 1 63 2 23 2147483647 46 1 23 1 46 2 48 2147483647 63 1 48 1 63 2 87 2147483647 8 1 87 1 8 2 73 2147483647 63 1 73 1 63 2 5 2147483647 52 1 5 1 52 2 80 2147483647 21 1 80 1 21 2 31 2147483647 44 1 31 1 44 2 101...
output:
2000 146132
result:
ok 2 number(s): "2000 146132"
Test #8:
score: 10
Accepted
time: 163ms
memory: 3716kb
input:
302 10599 2 72 2147483647 169 1 72 1 169 2 260 2147483647 165 1 260 1 165 2 12 2147483647 108 1 12 1 108 2 16 2147483647 26 1 16 1 26 2 28 2147483647 148 1 28 1 148 2 7 2147483647 74 1 7 1 74 2 139 2147483647 199 1 139 1 199 2 231 2147483647 9 1 231 1 9 2 287 2147483647 123 1 287 1 123 2 135 2147483...
output:
5000 1106316
result:
ok 2 number(s): "5000 1106316"
Test #9:
score: 10
Accepted
time: 219ms
memory: 3804kb
input:
302 10599 2 222 2147483647 132 1 222 1 132 2 17 2147483647 7 1 17 1 7 2 177 2147483647 253 1 177 1 253 2 90 2147483647 195 1 90 1 195 2 128 2147483647 289 1 128 1 289 2 42 2147483647 193 1 42 1 193 2 213 2147483647 133 1 213 1 133 2 263 2147483647 293 1 263 1 293 2 50 2147483647 155 1 50 1 155 2 228...
output:
5000 1290871
result:
ok 2 number(s): "5000 1290871"
Test #10:
score: 10
Accepted
time: 211ms
memory: 3768kb
input:
302 10599 2 176 2147483647 289 1 176 1 289 2 190 2147483647 99 1 190 1 99 2 10 2147483647 96 1 10 1 96 2 240 2147483647 165 1 240 1 165 2 273 2147483647 205 1 273 1 205 2 248 2147483647 194 1 248 1 194 2 220 2147483647 122 1 220 1 122 2 194 2147483647 167 1 194 1 167 2 8 2147483647 67 1 8 1 67 2 227...
output:
5000 1395897
result:
ok 2 number(s): "5000 1395897"