QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#339953 | #5479. Traveling Salesperson in an Island | lmf_up | WA | 1ms | 4192kb | C++20 | 39.0kb | 2024-02-28 09:26:26 | 2024-02-28 09:26:26 |
Judging History
answer
#include<bits/stdc++.h>
#define cp const point &
#define cl const line &
#define cc const circle &
#define LD long double
std::mt19937 rnd(time(0));
const LD eps = 1e-6;
const LD pi = std::numbers::pi;
const LD INF = 1e9;
int sgn(LD x)
{
return x > eps ? 1 : (x < -eps ? -1 : 0);
}
LD sqr(LD x)
{ return x * x; }
struct point
{
LD x, y;
point operator+(cp a) const
{ return {x + a.x, y + a.y}; }
point operator-(cp a) const
{ return {x - a.x, y - a.y}; }
point operator*(LD t) const
{ return {x * t, y * t}; }
point operator/(LD t) const
{ return {x / t, y / t}; }
point rot(LD t) const
{ return {(LD) (x * cos(t) - y * sin(t)), (LD) (x * sin(t) + y * cos(t))}; }
point rot90() const
{ return {-y, x}; }
point rot270() const
{return point(y,-x);}
LD len2() const
{ return x * x + y * y; }
LD len() const
{ return sqrtl(x * x + y * y); }
point unit() const
{
LD d = len();
return {(LD) (x / d), (LD) (y / d)};
}
int on_up()//b不判(0,0)
{
return sgn(y) == 1 || (sgn(y) == 0 && sgn(x) <0);
}
void print()
{
std::cout << x << ' ' << y << std::endl;
}
void read()
{
int xx, yy;
std::cin >> xx >> yy;
x = xx, y = yy;
}
friend bool operator<(cp a, cp b)
{
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
friend bool operator>(cp a, cp b)
{
return a.x == b.x ? a.y > b.y : a.x > b.x;
}
};
LD dot(cp a, cp b);
bool operator==(cp a, cp b)
{
return !sgn(dot(a - b, a - b));
// return !sgn(a.x-b.x)&&!(a.y-b.y); //看题目有无给出确定两实数相等的eps
}
LD dis(cp a, cp b)//两点距离
{
return sqrtl(sqr(a.x - b.x) + sqr(a.y - b.y));
}
LD dot(cp a, cp b)//点乘
{
return a.x * b.x + a.y * b.y;
}
LD det(cp a, cp b)//叉乘
{
return a.x * b.y - b.x * a.y;
}
LD deg(point a,point b)
{
a=a.unit(),b=b.unit();
LD d=dis(a,b);
return 2*asinl(d/2);
}
bool turn_left_strict(cp a,cp b,cp c)
{
return sgn(det(b-a,c-a))>0;
}
bool turn_left(cp a, cp b, cp c)
{
return sgn(det(b - a, c - a)) >=0;
}
struct line
{
point s, t;
line()
{}
line(point a, point b) : s(a), t(b)
{}
void read()
{
s.read(), t.read();
}
void print()
{
s.print(), std::cout << ' ', t.print();
}
};
struct circle
{
point c;
LD r;
circle()
{}
circle(point C, LD R)
{ c = C, r = R; }
};
bool in_circle(cp a, cc b)
{
return sgn((b.c - a).len() - b.r) <= 0;
}
circle make_circle(point u, point v)
{
point p = (u + v) / 2;
return circle(p, (u - p).len());
}
circle make_circle(cp a, cp b, cp c)
{
point p = b - a, q = c - a;
point s(dot(p, p) / 2, dot(q, q) / 2);
LD d = det(p, q);
p = point(det(s, point(p.y, q.y)), det(point(p.x, q.x), s)) / d;
return circle(a + p, p.len());
}
circle min_circle(std::vector<point> p)
{
circle ret(p[0], 0);
std::shuffle(p.begin(), p.end(), rnd);
int len = p.size();
for (int i = 0; i < len; i++)
if (!in_circle(p[i], ret))
{
ret = circle(p[i], 0);
for (int j = 0; j < i; j++)
if (!in_circle(p[j], ret))
{
ret = make_circle(p[j], p[i]);
for (int k = 0; k < j; ++k)
if (!in_circle(p[k], ret))
ret = make_circle(p[i], p[j], p[k]);
}
}
return ret;
}
LD get_rad(point a, point b)
{
if (a == point(0, 0) || b == point(0, 0))
return 0;
else
{
return acosl(dot(a, b) / (a.len() * b.len()));
}
}
bool same_dir(cl a, cl b)//判断方向是否一致
{
return sgn(det(b.t - b.s, a.t - a.s)) == 0 && sgn(dot(b.t - b.s, a.t - a.s)) > 0;
}
bool point_on_line(cp a, cl l)//判断点是否在直线上
{
return sgn(det(a - l.s, l.t - l.s)) == 0;
}
bool point_on_segment(cp a, cl l)//判断点是否在线段上
{
return point_on_line(a, l) && sgn(dot(l.s - a, l.t - a)) <= 0;//(<=代表可以端点
}
bool two_side(cp a, cp b, cl c)//判断两个点是否在线段的两边
{
return sgn(det(a - c.s, c.t - c.s)) * sgn(det(b - c.s, c.t - c.s)) < 0;
}
bool intersect_judge_strict(cl a, cl b)
{
return two_side(a.s, a.t, b) && two_side(b.s, b.t, a);
}
bool intersect_judge(cl a, cl b)
{//判断两个线段是否相交
if (point_on_segment(a.s, b) || point_on_segment(a.t, b) || point_on_segment(b.s, a) ||
point_on_segment(b.t, a))
return true;
return intersect_judge_strict(a, b);
}
point line_intersect(cl a, cl b)
{//得到两线段的交点
LD s1 = det(a.t - a.s, b.s - a.s);
LD s2 = det(a.t - a.s, b.t - a.s);
return (b.s * s2 - b.t * s1) / (s2 - s1);
}
bool point_on_ray(cp a, cl b)
{//判断点是否在射线上
return sgn(det(a - b.s, b.t - b.s)) == 0 && sgn(dot(a - b.s, b.t - b.s)) >= 0;
}
bool ray_intersect_judge(line a, line b)//判断两射线是否相交
{
LD s1, s2;
s1 = det(a.t - a.s, b.s - a.s);
s2 = det(a.t - a.s, b.t - a.s);
if (sgn(s1) == 0 && sgn(s2) == 0)
return sgn(dot(a.t - a.s, b.s - a.s)) >= 0 || sgn(dot(b.t - b.s, a.s - b.s));
if (!sgn(s1 - s2) || sgn(s1) == sgn(s2 - s1))return 0;
std::swap(a, b);
s1 = det(a.t - a.s, b.s - a.s);
s2 = det(a.t - a.s, b.t - a.s);
return sgn(s1) != sgn(s2 - s1);
}
LD point_to_line(cp a, cl b)
{//点到直线的距离
return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
}
point project_to_line(cp a, cl b)
{//得到点在线上的投影
return b.s + (b.t - b.s) * (dot(a - b.s, b.t - b.s) / (b.t - b.s).len2());
}
LD point_to_segment(cp a, cl b)
{//点到线段的距离
if (b.s == b.t)
return dis(a, b.s);
if (sgn(dot(b.s - a, b.t - b.s)) * sgn(dot(b.t - a, b.t - b.s)) <= 0)
return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
return std::min(dis(a, b.s), dis(a, b.t));
}
std::vector<point> line_circle_intersect(cl a, cc b)//线与圆的交点
{//返回线与圆的交点
if (sgn(point_to_segment(b.c, a) - b.r) > 0)
return std::vector<point>();
LD x = sqrtl(sqr(b.r) - sqr(point_to_line(b.c, a)));
return std::vector<point>(
{project_to_line(b.c, a) + (a.s - a.t).unit() * x, project_to_line(b.c, a) - (a.s - a.t).unit() * x});
}
LD circle_intersect_area(cc a, cc b)//求两个圆相交区域的面积
{
LD d = dis(a.c, b.c);
if (sgn(d - (a.r + b.r)) >= 0)return 0;
if (sgn(d - abs(a.r - b.r)) <= 0)
{
LD r = std::min(a.r, b.r);
return r * r * pi;
}
LD x = (d * d + a.r * a.r - b.r * b.r) / (2 * d),
t1 = acosl(std::min((LD) 1, std::max((LD) -1, x / a.r))),
t2 = acosl(std::min((LD) 1, std::max((LD) -1, (d - x) / b.r)));
return sqr(a.r) * t1 + sqr(b.r) * t2 - d * a.r * sinl(t1);
}
std::vector<point> circle_intersect(cc a, cc b)//求两个圆的交
{
if (a.c == b.c || sgn(dis(a.c, b.c) - a.r - b.r) > 0 || sgn(dis(a.c, b.c) - abs(a.r - b.r)) < 0)
return {};
point r = (b.c - a.c).unit();
LD d = dis(a.c, b.c);
LD x = ((sqr(a.r) - sqr(b.r)) / d + d) / 2;
LD h = sqrtl(sqr(a.r) - sqr(x));
if (sgn(h) == 0)return {a.c + r * x};
return {a.c + r * x + r.rot90() * h, a.c + r * x - r.rot90() * h};
}
std::vector<point> tangent(cp a, cc b)//求一个点关于圆的切线
{
circle p = make_circle(a, b.c);
return circle_intersect(p, b);
}
std::vector<line> extangent(cc a, cc b)//求两圆的外切线
{
std::vector<line> ret;
if (sgn(dis(a.c, b.c) - abs(a.r - b.r)) <= 0)return ret;
if (sgn(a.r - b.r) == 0)
{
point dir = b.c - a.c;
dir = (dir * a.r / dir.len()).rot90();
ret.push_back(line(a.c + dir, b.c + dir));
ret.push_back(line(a.c - dir, b.c - dir));
}
else
{
point p = (b.c * a.r - a.c * b.r) / (a.r - b.r);
std::vector pp = tangent(p, a), qq = tangent(p, b);
if (pp.size() == 2 && qq.size() == 2)
{
if (sgn(a.r - b.r) < 0)
std::swap(pp[0], pp[1]), std::swap(qq[0], qq[1]);
ret.push_back(line(pp[0], qq[0]));
ret.push_back(line(pp[1], qq[1]));
}
}
return ret;
}
std::vector<line> intangent(cc a, cc b)//求两圆的内切线
{
std::vector<line> ret;
point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
std::vector pp = tangent(p, a), qq = tangent(p, b);
if (pp.size() == 2 && qq.size() == 2)
{
ret.push_back(line(pp[0], qq[0]));
ret.push_back(line(pp[1], qq[1]));
}
return ret;
}
std::vector<point> cut(const std::vector<point> &c, line p)
{
std::vector<point> ret;
if (c.empty())return ret;
int len = c.size();
for (int i = 0; i < len; i++)
{
int j = (i + 1) % len;
if (turn_left(p.s, p.t, c[i]))ret.push_back(c[i]);
if (two_side(c[i], c[j], p))
ret.push_back(line_intersect(p, line(c[i], c[j])));
}
return ret;
}
std::vector<point> convex_hull(std::vector<point> a)
{//凸包,字典序
int n = (int) a.size(), cnt = 0;
if (n < 2) return a;
std::sort(a.begin(), a.end()); // less<pair>
std::vector<point> ret;
for (int i = 0; i < n; ++i)
{
while (cnt > 1
&& !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
--cnt, ret.pop_back();
++cnt, ret.push_back(a[i]);
}
int fixed = cnt;
for (int i = n - 2; i >= 0; --i)
{
while (cnt > fixed
&& !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
--cnt, ret.pop_back();
++cnt, ret.push_back(a[i]);
}
ret.pop_back();
return ret;
}
std::vector<point> minkovski(std::vector<std::vector<point>> a)
{
if (a[0].size() == 1)
return a[1];
if (a[1].size() == 1)
return a[0];
for (int i = 0; i < 2; i++)a[i].push_back(a[i].front());
int i[2] = {0, 0}, len[2] = {(int) a[0].size() - 1, (int) a[1].size() - 1};
std::vector<point> ret;
ret.push_back(a[0][0] + a[1][0]);
do
{
int d = sgn(det(a[1][i[1] + 1] - a[1][i[1]], a[0][i[0] + 1] - a[0][i[0]])) >= 0;
ret.push_back(a[d][i[d] + 1] - a[d][i[d]] + ret.back());
i[d] = (i[d] + 1) % len[d];
}
while (i[0] || i[1]);
return ret;
}
struct Convex
{
int n;
std::vector<point> a, upper, lower;
std::map<point, int> mp;
Convex(std::vector<point> _a) : a(_a)
{
n = a.size();
int k = 0;
for (int i = 1; i < n; i++)if (a[k] < a[i])k = i;
for (int i = 0; i <= k; i++) lower.push_back(a[i]);
for (int i = k; i < n; i++) upper.push_back(a[i]);
upper.push_back(a[0]);
}
void pre_to_check_point()
{
for (int i = 0; i < n; i++)
mp[a[i]] = i;
}
std::pair<LD, int> get_tan(std::vector<point> &con, point vec)
{
int l = 0, r = (int) con.size() - 2;
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
if (sgn(det(con[mid + 1] - con[mid], vec)) > 0)r = mid;
else l = mid;
}
return std::max(std::make_pair(det(vec, con[r]), r), std::make_pair(det(vec, con[0]), 0));
}
void upd_tan(cp p, int id, int &i0, int &i1)//辅助函数
{
// if (i0 == -1) i0 = id;
if ((det(a[i0] - p, a[id] - p)) > 0) i0 = id;
// if (i1 == -1) i1 = id;
if ((det(a[i1] - p, a[id] - p)) < 0) i1 = id;
}
void search(int l, int r, point p, int &i0, int &i1)//辅助函数
{
if (l == r)return;
upd_tan(p, l % n, i0, i1);
int sl = sgn(det(a[l % n] - p, a[(l + 1) % n] - p));
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
int smid = sgn(det(a[mid % n] - p, a[(mid + 1) % n] - p));
if (smid == sl)l = mid;
else r = mid;
}
upd_tan(p, r % n, i0, i1);
}
int search(point u, point v, int l, int r)//辅助函数
{
int sl = sgn(det(v - u, a[l % n] - u));
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
int smid = sgn(det(v - u, a[mid % n] - u));
if (smid == sl) l = mid;
else r = mid;
}
return l % n;
}
//判定点是否在凸包内,在边界返回true
bool contain(point p)
{
if (p.x < lower[0].x || p.x > lower.back().x)return false;
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)return false;
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
return false;
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)return false;
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
return false;
return true;
}
int contain_strict(point p)//0代表在外面 1代表在里面 2代表在边上 3代表在点上
{
if (p.x < lower[0].x || p.x > lower.back().x)return 0;
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)return 0;
else if (sgn(lower[id].y - p.y) == 0) return 3;
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y < lower[id + 1].y)
return 2;
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y == lower[id + 1].y)
return 3;
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
return 0;
else if (sgn(det(lower[id - 1] - p, lower[id] - p)) == 0)
return 2;
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)return 0;
else if (upper[id].y == p.y)return 3;
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y > upper[id + 1].y)
return 2;
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y == upper[id + 1].y)
return 3;
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
return 0;
else if (sgn(det(upper[id - 1] - p, upper[id] - p)) == 0)
return 2;
return 1;
}
bool get_tan(point p, int &i0, int &i1)
{// 求点 p 关于凸包的两个切点, 如果在凸包外则有序返回编号, 共线的多个切点返回任意一个, 否则返回 false
i0 = i1 = 0;
int id = int(std::lower_bound(lower.begin(), lower.end(), p) - lower.begin());
search(0, id, p, i0, i1);
search(id, (int) lower.size(), p, i0, i1);
id = int(std::lower_bound(upper.begin(), upper.end(), p, std::greater<point>()) - upper.begin());
search((int) lower.size() - 1, (int) lower.size() - 1 + id, p, i0, i1);
search((int) lower.size() - 1 + id, (int) lower.size() - 1 + (int) upper.size(), p, i0, i1);
return true;
}
bool my_get_tan(point p, int &i0, int &i1)//自己魔改,常数大,可求点在凸包上的切线
{
if (p.x < lower[0].x || p.x > lower.back().x)
{
get_tan(p, i0, i1);
return true;
}
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(lower[id].y - p.y) == 0)
{
i0 = (id - 1 + n) % n, i1 = (id + 1) % n;
return true;
}
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y < lower[id + 1].y)
{
i0 = id, i1 = (id + 1) % n;
return true;
}
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y == lower[id + 1].y)
{
i0 = id, i1 = (id + 2) % n;
return true;
}
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(det(lower[id - 1] - p, lower[id] - p)) == 0)
{
i0 = (id - 1 + n) % n, i1 = id;
return true;
}
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)
{
get_tan(p, i0, i1);
return true;
}
else if (upper[id].y == p.y)
{
i0 = id + lower.size() - 1;
i1 = (i0 + 1 + n) % n;
i0 = (i0 + n - 1) % n;
return true;
}
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y > upper[id + 1].y)
{
i0 = id + lower.size() - 1;
i1 = (i0 + 1) % n;
i0 = (i0 + n) % n;
return true;
}
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y == upper[id + 1].y)
{
i0 = n - 1, i1 = 1;
return true;
}
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(det(upper[id - 1] - p, upper[id] - p)) == 0)
{
i0 = (id + lower.size() - 1 + n) % n;
i1 = (i0 - 1 + n) % n;
std::swap(i0, i1);
return true;
}
return false;
}
// 求凸包上和向量 vec 叉积最大的点, 返回编号, 共线的多个切点返回任意一个
int get_tan(point vec)
{
std::pair<LD, int> ret = get_tan(upper, vec);
ret.second = (ret.second + (int) lower.size() - 1) % n;
ret = std::max(ret, get_tan(lower, vec));
return ret.second;
}
bool my_judge_intersect_segment(cp u, cp v)//判断线段与凸包是否有严格相交,即有无穿过内部,默认起点和终点不在凸包内部了
{
int u1, u2;
my_get_tan(u, u1, u2);
if (!turn_left(u, a[u2], v) || !turn_left(u, v, a[u1]))
return false;
my_get_tan(v, u1, u2);
if (!turn_left(v, a[u2], u) || !turn_left(v, u, a[u1]))
return false;
return true;
}
// 求凸包和直线 u,v 的交点, 如果无严格相交返回 false. 如果有则是和 (i,next(i)) 的交点, 两个点无序, 交在点上不确定返回前后两条线段其中之一
bool get_inter(point u, point v, int &i0, int &i1)
{
int p0 = get_tan(u - v), p1 = get_tan(v - u);
if (sgn(det(v - u, a[p0] - u)) * sgn(det(v - u, a[p1] - u)) < 0)
{
if (p0 > p1)std::swap(p0, p1);
i0 = search(u, v, p0, p1);
i1 = search(u, v, p1, p0 + n);
return true;
}
else return false;
}
};
bool in_polygon(cp p, const std::vector<point> &po)//判断点是否在多边形里
{
int n = (int) po.size();
int cnt = 0;
for (int i = 0; i < n; i++)
{
point a = po[i], b = po[(i + 1) % n];
if (point_on_segment(p, line(a, b)))return true;
int x = sgn(det(p - a, b - a)), y = sgn(a.y - p.y), z = sgn(b.y - p.y);
if (x > 0 && y <= 0 && z > 0)++cnt;
if (x < 0 && z <= 0 && y > 0)--cnt;
}
return cnt != 0;
}
bool In_Polygon(cp P, std::vector<point> &polygon)//判断点是否在多边形里面,射线法O(n)
{
bool flag = false; //相当于计数
point P1, P2; //多边形一条边的两个顶点
int n = polygon.size();
for (int i = 0, j = n - 1; i < n; j = i++)
{
//polygon[]是给出多边形的顶点
P1 = polygon[i];
P2 = polygon[j];
if (point_on_segment(P, line(P1, P2)))return true;
//前一个判断min(P1.y,P2.y)<P.y<=max(P1.y,P2.y)
//这个判断代码我觉得写的很精妙 我网上看的 应该是大神模版
//后一个判断被测点 在 射线与边交点 的左边
if ((sgn(P1.y - P.y) > 0 != sgn(P2.y - P.y) > 0) &&
sgn(P.x - (P.y - P1.y) * (P1.x - P2.x) / (P1.y - P2.y) - P1.x) < 0)
flag = !flag;
}
return flag;
}
std::vector<point> Minkovski(std::vector<std::vector<point>> a)//可处理退化成线段的凸包
{ //闵可夫斯基和
std::vector<point> S;
int n = a[0].size(), m = a[1].size();
std::vector<point> A(n), B(m);
for (int i = 0; i < n - 1; i++) A[i] = a[0][i + 1] - a[0][i];
A[n - 1] = a[0][0] - a[0][n - 1];
for (int i = 0; i < m - 1; i++) B[i] = a[1][i + 1] - a[1][i];
B[m - 1] = a[1][0] - a[1][m - 1]; //将两个凸包上的边向量都存入a,b中
S.push_back(a[0][0] + a[1][0]);
int p1 = 0, p2 = 0;
while (p1 < n && p2 < m)
{
LD d = det(A[p1], B[p2]);
if (d > 0)
S.push_back(S.back() + A[p1++]);
else if (d < 0)
S.push_back(S.back() + B[p2++]);
else
{
if (dot(A[p1], B[p1]) >= 0)
S.push_back(S.back() + A[p1++]);
else
{
auto [x, y] = A[p1];
if (x > 0)
S.push_back(S.back() + A[p1++]);
else if (x < 0)
S.push_back(S.back() + B[p2++]);
else
{
if (y > 0)
S.push_back(S.back() + A[p1++]);
else S.push_back(S.back() + B[p2++]);
}
}
}
}
while (p1 < n)
S.push_back(S.back() + A[p1++]);
while (p2 < m)
S.push_back(S.back() + B[p2++]);
return S;
}
LD farthest_pair(std::vector<point> pu)//最远点对
{
pu = convex_hull(pu);
std::vector<std::vector<point>> ppu(2);
std::vector<point> pu1;
for (auto x: pu)
pu1.push_back(x * -1);
pu1 = convex_hull(pu1);
ppu[0] = pu, ppu[1] = pu1;
auto ret = Minkovski(ppu);
LD ans = 0;
for (auto x: ret)
ans = std::max(ans, x.len());
return ans;
}
LD closest_pair(std::vector<point> pu)//最近点对O(nlogn)
{
int n = pu.size();
std::sort(pu.begin(), pu.end());
for (int i = 1; i < n; i++)
if (pu[i] == pu[i - 1])
return 0;
std::set<point, decltype([](cp u, cp v)
{ return u.y == v.y ? u.x < v.x : u.y < v.y; })> s;
LD ans = (pu[0] - pu[1]).len2();
for (int i = 0, j = 0; i < n; i++)
{
if (ans == 0)
break;
auto it = s.begin();
while (!s.empty() && j < i && sqr(pu[i].x - pu[j].x) >= ans)
s.erase(pu[j++]);
auto oit = s.lower_bound(pu[i]);
it = oit;
while (ans)
{
if (it == s.end())
break;
if (sqr(it->y - pu[i].y) >= ans)
break;
ans = std::min(ans, (pu[i] - *it).len2());
it++;
}
it = oit;
while (ans)
{
if (it == s.begin())
break;
it--;
if (sqr(it->y - pu[i].y) >= ans)
break;
ans = std::min(ans, (pu[i] - *it).len2());
}
s.insert(pu[i]);
}
return sqrtl(ans);
}
void print(std::vector<point> res)
{
std::cout << "print:\n";
int cnt = 0;
for (auto [x, y]: res)
std::cout << ++cnt << ' ' << x << ' ' << y << std::endl;
std::cout << "end\n";
}
int onRight(cl a,cp b){return det(a.t-a.s,b-a.s)<=eps;}//如果要包含点就-eps,不要就eps
/*
丢直线 Ax+By+C<0;
if(sgn(b)==0)
pl.push_back(line(point(-c/a,0),point(-c/a-b,a)));
else pl.push_back(line(point(0,-c/b),point(-b,-c/b+a)));
* */
line get_line(LD a,LD b,LD c)//得到向量Ax+By+C<0
{
if(sgn(b)==0)
return line(point(-c/a,0),point(-c/a-b,a));
else return line(point(0,-c/b),point(-b,-c/b+a));
}
std::vector<point> my_half_plane(std::vector<line> a)
{
/*要加框取消注释 请注意对于一组解(x,y)x和y是否有要求
a.push_back({{-INF,-INF},{INF,-INF}});
a.push_back({{INF,-INF},{INF,INF}});
a.push_back({{INF,INF},{-INF,INF}});
a.push_back({{-INF,INF},{-INF,-INF}});
*/
std::sort(a.begin(),a.end(),[&](auto x,auto y)
{
point u = x.t - x.s, v = y.t - y.s;
if (u.on_up() != v.on_up())return u.on_up() < v.on_up();
// if(sgn(det(u,v)))
return sgn(det(u, v)) > 0;
// else return sgn(det(x.t-y.s,y.t-y.s))<0;
});
int n = a.size();
std::vector<line> que(n + 1);
std::vector<point> p1(n + 1);
std::vector<point> p2;
int left = 0, right = 0;
que[0] = a[0];
std::vector<point>sb;
for (int i = 1; i < n; i++)
{
if(sgn(det(a[i].t-a[i].s,a[i-1].t-a[i-1].s))==0)
continue;
while (left < right && onRight(a[i],p1[right]))right--;
while (left < right && onRight(a[i],p1[left+1]))left++;
que[++right] = a[i];
if (std::abs(det(que[right].t - que[right].s, que[right - 1].t - que[right - 1].s)) <= eps)
{
if (onRight(que[right],que[right-1].s) &&
dot(que[right].t-que[right].s,que[right-1].t-que[right-1].s)<=-eps)
return sb;
right--;
if (!onRight(que[right],a[i].s))
que[right] = a[i];
}
if (left < right)p1[right] = line_intersect(que[right], que[right - 1]);
}
while (left < right && onRight(que[left],p1[right]))right--;
if (right - left <= 1)return sb;
p1[left] = line_intersect(que[left], que[right]);
for (int i = left; i <= right; i++)
p2.push_back(p1[i]);
return p2;
}
LD get_are(std::vector<point>pu)
{
LD ans=0;
int n=pu.size();
for(int i=0;i<n;i++)
ans+=det(pu[i],pu[(i+1)%n]);
return ans/2;
}
LD get_max_inscribed_circle(const std::vector<point>pu)
{
int n=pu.size();
std::vector<point>dt(n);
for(int i=0;i<n;i++)
dt[i]=((pu[(i+1)%n]-(pu[i]+pu[(i+1)%n])/2).rot90()).unit();
LD l=0,r=1e7;
std::function<bool(LD)>check=[&](LD r)
{
std::vector<line>pl;
for(int i=0;i<n;i++)
pl.push_back({pu[i]+dt[i]*r,pu[(i+1)%n]+dt[i]*r});
auto po= my_half_plane(pl);
return !po.empty();
};
while(r-l>1e-4)
{
LD mid=(r+l)/2;
if(check(mid))
l=mid;
else r=mid;
}
return l;
}
void my_cut_pol( std::vector<line>& lin,std::vector<std::vector<point>>& pol)//用线切凸包
{
int cnt_line=lin.size();
for(int i=0;i<cnt_line;i++)
{
int len=pol.size();
line li=lin[i];
for(int j=0;j<len;j++)
{
int len1=pol[j].size();
for(int k=0;k<len1;k++)
{
LD tt1=sgn(det(li.s-pol[j][k],li.t-pol[j][k])),tt2=sgn(det(li.s-pol[j][(k+1)%len1],li.t-pol[j][(k+1)%len1]));
if(!tt1&&!tt2)
break;
if(tt1*tt2<0)
{
point p1= line_intersect(li,line(pol[j][k],pol[j][(k+1)%len1])),p2;
std::vector<point>ne,ol;
ne.push_back(p1);
for(int t1=1;t1<len1;t1++)
{
LD tt11=det(li.s-pol[j][(k+t1)%len1],li.t-pol[j][(k+t1)%len1]);
LD tt12=det(li.s-pol[j][(k+t1+1)%len1],li.t-pol[j][(k+t1+1)%len1]);
ne.push_back(pol[j][(k+t1)%len1]);
if(tt11*tt12<0)
{
p2= line_intersect(li,line(pol[j][(k+t1)%len1],pol[j][(k+t1+1)%len1]));
ne.push_back(p2);
for(int t2=t1+1;t2<=len1;t2++)
ol.push_back(pol[j][(k+t2)%len1]);
break;
}
else if(tt12==0)
{
p2=pol[j][(k+t1+1)%len1];
ne.push_back(p2);
for(int t2=t1+2;t2<=len1;t2++)
ol.push_back(pol[j][(k+t2)%len1]);
break;
}
}
ol.push_back(p1);
ol.push_back(p2);
pol[j]=ol;
pol.push_back(ne);
break;
}
else if(tt2==0)
{
LD tt3=sgn(det(li.s-pol[j][(k+2)%len1],li.t-pol[j][(k+2)%len1]));
if(tt1*tt3>=0)
break;
point p1=pol[j][(k+1)%len1],p2;
std::vector<point>ne,ol;
ne.push_back(p1);
for(int t1=2;t1<len1;t1++)
{
LD tt11=det(li.s-pol[j][(k+t1)%len1],li.t-pol[j][(k+t1)%len1]);
LD tt12=det(li.s-pol[j][(k+t1+1)%len1],li.t-pol[j][(k+t1+1)%len1]);
ne.push_back(pol[j][(k+t1)%len1]);
if(tt11*tt12<0)
{
p2= line_intersect(li,line(pol[j][(k+t1)%len1],pol[j][(k+t1+1)%len1]));
ne.push_back(p2);
for(int t2=t1+1;t2<=len1;t2++)
ol.push_back(pol[j][(k+t2)%len1]);
break;
}
else if(tt12==0)
{
p2=pol[j][(k+t1+1)%len1];
ne.push_back(p2);
for(int t2=t1+2;t2<=len1;t2++)
ol.push_back(pol[j][(k+t2)%len1]);
break;
}
}
ol.push_back(p1);
ol.push_back(p2);
pol[j]=ol;
pol.push_back(ne);
break;
}
}
}
}
}
std::vector<point> my_cut_to_V(const std::vector<point>&pu,cl li)
{
int n=pu.size();
for(int i=0;i<n;i++)
{
LD tt1=sgn(det(li.s-pu[i],li.t-pu[i])),tt2=sgn(det(li.s-pu[(i+1)%n],li.t-pu[(i+1)%n]));
if(!tt1&&!tt2)
return pu;
if(tt1*tt2<0)
{
point p1= line_intersect(li,line(pu[i],pu[(i+1)%n])),p2;
std::vector<point>ne,ol;
ne.push_back(p1);
for(int j=1;j<n;j++)
{
LD tt11=sgn(det(li.s-pu[(i+j)%n],li.t-pu[(i+j)%n])),tt12=sgn(det(li.s-pu[(i+j+1)%n],li.t-pu[(i+j+1)%n]));
ne.push_back(pu[(i+j)%n]);
if(tt11*tt12<0)
{
p2= line_intersect(li,line(pu[(i+j)%n],pu[(i+j+1)%n]));
ne.push_back(p2);
for(int k=j+1;k<=n;k++)
ol.push_back(pu[(i+k)%n]);
break;
}
else if(tt12==0)
{
p2=pu[(i+j+1)%n];
ne.push_back(p2);
for(int k=j+2;k<=n;k++)
ol.push_back(pu[(i+k)%n]);
break;
}
}
ol.push_back(p1);
ol.push_back(p2);
if(tt1>0) return ol;
else return ne;
}
else if(tt2==0)
{
LD tt3=sgn(det(li.s-pu[(i+2)%n],li.t-pu[(i+2)%n]));
if(tt1*tt3>=0)
return pu;
point p1=pu[(i+1)%n],p2;
std::vector<point>ne,ol;
ne.push_back(p1);
for(int j=2;j<n;j++)
{
LD tt11=sgn(det(li.s-pu[(i+j)%n],li.t-pu[(i+j)%n]));
LD tt12=sgn(det(li.s-pu[(i+j+1)%n],li.t-pu[(i+j+1)%n]));
ne.push_back(pu[(i+j)%n]);
if(tt11*tt12<0)
{
p2= line_intersect(li,line(pu[(i+j)%n],pu[(i+j+1)%n]));
ne.push_back(p2);
for(int k=j+1;k<=n;k++)
ol.push_back(pu[(i+k)%n]);
break;
}
else if(tt12==0)
{
p2=pu[(i+j+1)%n];
ne.push_back(p2);
for(int k=j+2;k<=n;k++)
ol.push_back(pu[(i+k)%n]);
break;
}
}
ol.push_back(p1);
ol.push_back(p2);
if(tt1>0)return ol;
else return ne;
}
}
return pu;
}
std::vector<std::vector<point>> Vtu(const std::vector<point>pu)
{
int n=pu.size();
std::vector<int>id(n);
for(int i=0;i<n;i++)
id[i]=i;
std::shuffle(id.begin(),id.end(),rnd);
std::vector<point>base;
LD inf=1e6+10;
base.push_back(point(-inf,-inf));
base.push_back(point(inf,-inf));
base.push_back(point(inf,inf));
base.push_back(point(-inf,inf));
std::vector<std::vector<point>>ret(n);
for(int i=0;i<n;i++)
{
std::vector<point>p1(base);
for(int j=0;j<n;j++)
{
if(i!=id[j])
{
point mid=(pu[i]+pu[id[j]])/2;
p1= my_cut_to_V(p1,line(mid,mid+(pu[id[j]]-mid).rot90()));
}
}
ret[i]=p1;
}
return ret;
}
std::vector<point> my_get_line_cut_pol(cl li,const std::vector<point>&pu)//用直线切简单多边型得到的点,简单多边形要逆时针,无180°角。
{
point p1=li.s, p2=li.t;
std::vector<point> np;
LD ans = 0;
int n=pu.size();
for (int i = 0; i < n; i++)
{
if (two_side(pu[i],pu[(i+1)%n],line(p1,p2)))
{
np.push_back(line_intersect(line(pu[i], pu[(i + 1) % n]), line(p1, p2)));
continue;
}
int tt1 = sgn(det(p1 - pu[i], p2 - pu[i])), tt2 = sgn(
det(p1 - pu[(i + 1) % n], p2 - pu[(i + 1) % n])), tt3 = sgn(
det(p1 - pu[(i + 2) % n], p2 - pu[(i + 2) % n]));
if (tt2 == 0)
{
if (tt1 * tt3 > 0)
continue;
else if (tt1 * tt3 < 0)
np.push_back(pu[(i + 1) % n]);
else if (sgn(det(pu[(i + 2) % n] - pu[(i + 1) % n], pu[i] - pu[(i + 1) % n])) > 0)
np.push_back(pu[(i + 1) % n]);
}
}
std::sort(np.begin(), np.end(), [&](auto u, auto v)
{
if (p1.x == p2.x)
return u.y < v.y;
else
return u.x < v.x;
});
return np;
}
bool line_in_polygon(cl li,const std::vector<point>&p)//
{
cp u=li.s,v=li.t;
if(u==v)
return true;
int n=p.size();
for(int i=0;i<n;i++)
{
int j=(i+1)%n,k=(i+2)%n;
cp ii=p[i],jj=p[j],kk=p[k];
if(intersect_judge_strict(line(u,v),line(ii,jj)))return 0;
int tt1=sgn(det(u-ii,v-ii)),tt2=sgn(det(u-jj,v-jj)),tt3=sgn(det(u-kk,v-kk));
if(tt2==0)
{
if(tt1*tt3>0)
continue;
else if(tt1*tt3<0)
return 0;
else if(sgn(det(kk-jj,ii-jj))>0)
{
LD d1=dis(u,jj),d2=dis(v,jj),d3=dis(u,v);
if(sgn(d3-d1-d2)==0)
{
int tt4=sgn(det(kk-jj,u-jj));
int tt5=sgn(det(kk-jj,v-jj));
if((tt4>0&&sgn(d2)>0)||(tt4<0&&sgn(d1)>0))
return 0;
if(((tt4>0||tt5<0)&&sgn(d2)>0)||((tt4<0||tt5>0)&&sgn(d1)>0))
return 0;
}
else continue;
}
}
}
return 1;
}//判断线段是否在简单多边形内
void solve()
{
int n,m;
std::cin>>n>>m;
std::vector<point>opu(n),pu1(m);
std::vector<std::vector<point>>PU(n);
std::vector<std::pair<point,int>>pu;
std::map<point,int>vis;
for(int i=0;i<n;i++)
opu[i].read(),vis[opu[i]]=1;
for(int i=0;i<m;i++)
{
pu1[i].read();
if(vis.find(pu1[i])!=vis.end())
{
vis[pu1[i]]=2;
continue;
}
for(int j=0;j<n;j++)
if(point_on_segment(pu1[i],line(opu[j],opu[(j+1)%n])))
{
PU[j].push_back(pu1[i]);
break;
}
}
for(int i=0;i<n;i++)
{
std::sort(PU[i].begin(),PU[i].end(),[&](auto u,auto v){
return sgn(dot(v-u,opu[(i+1)%n]-opu[i]))>0;
});
}
for(int i=0;i<n;i++)
{
pu.push_back(std::make_pair(opu[i],vis[opu[i]]-1));
for(auto p:PU[i])
pu.push_back(std::make_pair(p,1));
}
int len=pu.size();
// opu.clear();
// for(auto [x,y]:pu)
// opu.push_back(x);
std::vector<std::vector<LD>>dp(len,std::vector<LD>(len));
// for(int i=0;i<len;i++)
// pu[i].first.print();
for(int i=0;i<len;i++)
{
for (int j = 0; j < len; j++)
{
// std::cout<<"line "<<std::endl;
// pu[i].first.print(),pu[j].first.print();
if (line_in_polygon(line(pu[i].first, pu[j].first), opu))
dp[i][j] = dis(pu[i].first, pu[j].first);
else dp[i][j] = 1e18;
}
}
for(int k=0;k<len;k++)
{
for(int x=0;x<len;x++)
for(int y=0;y<len;y++)
dp[x][y]=std::min(dp[x][y],dp[x][k]+dp[k][y]);
}
LD ans=0;
std::vector<int>id;
// std::cout<<len<<std::endl;
for(int i=0;i<len;i++)
if(pu[i].second==1)
id.push_back(i);
for(int i=0;i<(int)id.size();i++)
ans+=dp[id[i]][id[(i+1)%(int)id.size()]];
std::cout<<ans<<std::endl;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0), std::cout.tie(0);
std::cout << std::fixed << std::setprecision(10);
int T = 1;
// std::cin>>T;
for (int i = 1; i <= T; i++)
solve();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 4192kb
input:
4 4 0 0 2 0 2 2 0 2 1 0 1 2 2 1 0 1
output:
5.6568542495
result:
ok found '5.6568542', expected '5.6568542', error '0.0000000'
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 4064kb
input:
8 2 0 0 4 0 4 4 0 4 0 3 3 3 3 1 0 1 0 0 0 4
output:
20.0000000000
result:
wrong answer 1st numbers differ - expected: '16.6491106', found: '20.0000000', error = '0.2012654'