QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#337101#8279. Segment Treeucup-team987#WA 1ms10056kbC++2024.5kb2024-02-25 03:51:232024-02-25 03:51:24

Judging History

你现在查看的是最新测评结果

  • [2024-02-25 03:51:24]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:10056kb
  • [2024-02-25 03:51:23]
  • 提交

answer

#include<iostream>
#include<vector>
#include<cassert>

#include <algorithm>
#include <cassert>
#include <vector>

namespace atcoder {

struct dsu {
  public:
    dsu() : _n(0) {}
    explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    std::vector<int> parent_or_size;
};

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder

using namespace std;
using mint=atcoder::modint998244353;
struct dat{
	mint A,B;
};
dat op(dat a,dat b)
{
	a.A+=b.A;
	a.B+=b.B;
	return a;
}
dat e(){return(dat){mint(0),mint(0)};}
dat mp(mint f,dat x)
{
	x.A*=f;
	x.B*=f;
	return x;
}
mint cmp(mint f,mint g){return f*g;}
mint id(){return mint(1);}
int N,M;
int X[2<<17],L[2<<17],R[2<<17];
mint val[2<<17];
void dfsLR(int l,int r,int&id)
{
	if(l+1==r)return;
	L[id]=l,R[id]=r;
	int m=X[id];
	id++;
	dfsLR(l,m,id);
	dfsLR(m,r,id);
}
int vis[2<<17];
int toL[2<<17],toR[2<<17];
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cin>>N>>M;
	for(int i=0;i<N-1;i++)cin>>X[i];
	{
		int id=0;
		dfsLR(0,N,id);
		assert(id==N-1);
		//for(int i=0;i<N-1;i++)cout<<L[i]<<" "<<R[i]<<endl;
	}
	atcoder::dsu uf(N+1);
	for(int i=0;i<M;i++)
	{
		int l,r;cin>>l>>r;
		uf.merge(l,r);
		vis[l]=vis[r]=-1;
	}
	vector<pair<int,int> >T;
	for(vector<int>g:uf.groups())if(g.size()>=2)
	{
		int mx=0,mn=N;
		for(int u:g)mx=max(mx,u),mn=min(mn,u);
		T.push_back(make_pair(mn,mx));
	}
	sort(T.begin(),T.end());
	vector<dat>init(N,(dat){mint(1),mint(1)});
	for(int i=0;i<N;i++)val[i]=1;
	vector<int>TL(T.size()+1),TR(T.size()+1);
	for(int i=0;i<T.size();)
	{
		int l=T[i].first,r=T[i].second;
		i++;
		while(i<T.size()&&T[i].first<=r)
		{
			r=max(r,T[i].second);
			i++;
		}
		for(int j=l;j<r;j++)
		{
			init[j].B=mint(0);
		}
		for(int j=l;j<=r;j++)
		{
			if(vis[j]==-1)vis[j]=i+1;
		}
		TL[i+1]=l;TR[i+1]=r;
	}
	toL[0]=-1;
	for(int i=0;i<N;i++)
	{
		toL[i+1]=toL[i];
		if(vis[i])toL[i+1]=i;
	}
	toR[N]=N+1;
	for(int i=N;i--;)
	{
		toR[i]=toR[i+1];
		if(vis[i+1])toR[i]=i+1;
	}
	atcoder::lazy_segtree<dat,op,e,mint,mp,cmp,id>seg(init);
	for(int i=N-1;i--;)
	{
		int l=L[i],r=R[i],m=X[i];
		assert(l<m&&m<r);
		mint x=val[l],y=val[m];
		if(m-l<=r-m)
		{
			for(int j=l;j<m;j++)
			{
				int nr=toR[j];
				bool use=true;
				if(nr<m)nr=m;
				else if(nr>r)nr=r;
				if(toR[j]!=N+1&&TL[vis[toR[j]]]<=j)use=false;
				dat t=seg.get(j);
				mint f=seg.prod(m,nr).A+y;
				if(use)f+=seg.prod(nr,r).B;
				t.A*=f;t.B*=f;
				seg.set(j,t);
			}
			seg.apply(m,r,x);
		}
		else
		{
			for(int j=m;j<r;j++)
			{
				int nl=toL[j+1];
				//cout<<"nl = "<<nl<<endl;
				bool use=true;
				if(nl<l)nl=l;
				else if(nl>m)nl=m;
				if(toL[j+1]!=-1&&TR[vis[toL[j+1]]]>=j+1)use=false;
				dat t=seg.get(j);
				mint f=seg.prod(nl,m).A+x;
				if(use)f+=seg.prod(l,nl).B;
				//cout<<f.val()<<endl;
				t.A*=f;t.B*=f;
				seg.set(j,t);
			}
			seg.apply(l,m,y);
		}
		val[l]=x*y*2+seg.prod(l,r).A;
		//cout<<"(l, m, r) = ("<<l<<", "<<m<<", "<<r<<")"<<endl;
		//cout<<"val = ";for(int j=0;j<N;j++)cout<<val[j].val()<<" ";cout<<endl;
		//cout<<"seg = ";for(int j=0;j<N;j++)cout<<seg.get(j).A.val()<<" ";cout<<endl;
	}
	mint ans=val[0]+seg.all_prod().B;
	cout<<ans.val()<<endl;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 9708kb

input:

2 1
1
0 2

output:

5

result:

ok 1 number(s): "5"

Test #2:

score: 0
Accepted
time: 1ms
memory: 10056kb

input:

2 1
1
1 2

output:

5

result:

ok 1 number(s): "5"

Test #3:

score: 0
Accepted
time: 1ms
memory: 9980kb

input:

5 2
2 1 4 3
1 3
2 5

output:

193

result:

ok 1 number(s): "193"

Test #4:

score: 0
Accepted
time: 0ms
memory: 9816kb

input:

10 10
5 2 1 3 4 7 6 8 9
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 10

output:

70848

result:

ok 1 number(s): "70848"

Test #5:

score: 0
Accepted
time: 0ms
memory: 9748kb

input:

2 2
1
0 1
0 2

output:

4

result:

ok 1 number(s): "4"

Test #6:

score: 0
Accepted
time: 0ms
memory: 7812kb

input:

3 3
1 2
0 1
0 2
0 3

output:

14

result:

ok 1 number(s): "14"

Test #7:

score: 0
Accepted
time: 0ms
memory: 7944kb

input:

4 4
1 2 3
0 1
0 2
0 3
0 4

output:

48

result:

ok 1 number(s): "48"

Test #8:

score: 0
Accepted
time: 1ms
memory: 10052kb

input:

5 5
3 1 2 4
0 1
0 2
0 3
0 4
0 5

output:

164

result:

ok 1 number(s): "164"

Test #9:

score: 0
Accepted
time: 1ms
memory: 9700kb

input:

6 6
4 2 1 3 5
0 1
0 2
0 3
0 4
0 5
0 6

output:

544

result:

ok 1 number(s): "544"

Test #10:

score: 0
Accepted
time: 1ms
memory: 9788kb

input:

7 7
3 2 1 5 4 6
0 1
0 2
0 3
0 4
0 5
0 6
0 7

output:

1856

result:

ok 1 number(s): "1856"

Test #11:

score: 0
Accepted
time: 0ms
memory: 7716kb

input:

8 8
3 1 2 4 7 5 6
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8

output:

6528

result:

ok 1 number(s): "6528"

Test #12:

score: 0
Accepted
time: 0ms
memory: 7772kb

input:

9 9
3 1 2 4 7 6 5 8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9

output:

21520

result:

ok 1 number(s): "21520"

Test #13:

score: 0
Accepted
time: 1ms
memory: 7712kb

input:

10 10
8 2 1 3 4 6 5 7 9
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 10

output:

71296

result:

ok 1 number(s): "71296"

Test #14:

score: 0
Accepted
time: 1ms
memory: 7748kb

input:

2 3
1
0 1
0 2
1 2

output:

4

result:

ok 1 number(s): "4"

Test #15:

score: 0
Accepted
time: 1ms
memory: 9752kb

input:

3 6
1 2
0 1
0 2
0 3
1 2
1 3
2 3

output:

14

result:

ok 1 number(s): "14"

Test #16:

score: 0
Accepted
time: 1ms
memory: 7940kb

input:

4 10
1 2 3
0 1
0 2
0 3
0 4
1 2
1 3
1 4
2 3
2 4
3 4

output:

48

result:

ok 1 number(s): "48"

Test #17:

score: 0
Accepted
time: 1ms
memory: 9760kb

input:

5 15
1 4 3 2
0 1
0 2
0 3
0 4
0 5
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

output:

164

result:

ok 1 number(s): "164"

Test #18:

score: 0
Accepted
time: 1ms
memory: 7768kb

input:

6 21
5 3 1 2 4
0 1
0 2
0 3
0 4
0 5
0 6
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6

output:

544

result:

ok 1 number(s): "544"

Test #19:

score: 0
Accepted
time: 1ms
memory: 7724kb

input:

7 28
4 1 2 3 6 5
0 1
0 2
0 3
0 4
0 5
0 6
0 7
1 2
1 3
1 4
1 5
1 6
1 7
2 3
2 4
2 5
2 6
2 7
3 4
3 5
3 6
3 7
4 5
4 6
4 7
5 6
5 7
6 7

output:

1912

result:

ok 1 number(s): "1912"

Test #20:

score: 0
Accepted
time: 0ms
memory: 7712kb

input:

8 36
5 2 1 3 4 7 6
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
1 2
1 3
1 4
1 5
1 6
1 7
1 8
2 3
2 4
2 5
2 6
2 7
2 8
3 4
3 5
3 6
3 7
3 8
4 5
4 6
4 7
4 8
5 6
5 7
5 8
6 7
6 8
7 8

output:

6304

result:

ok 1 number(s): "6304"

Test #21:

score: 0
Accepted
time: 0ms
memory: 9768kb

input:

9 45
6 2 1 4 3 5 7 8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 4
3 5
3 6
3 7
3 8
3 9
4 5
4 6
4 7
4 8
4 9
5 6
5 7
5 8
5 9
6 7
6 8
6 9
7 8
7 9
8 9

output:

20736

result:

ok 1 number(s): "20736"

Test #22:

score: 0
Accepted
time: 1ms
memory: 9756kb

input:

10 55
6 3 2 1 4 5 8 7 9
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 10
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 5
4 6
4 7
4 8
4 9
4 10
5 6
5 7
5 8
5 9
5 10
6 7
6 8
6 9
6 10
7 8
7 9
7 10
8 9
8 10
9 10

output:

70784

result:

ok 1 number(s): "70784"

Test #23:

score: 0
Accepted
time: 0ms
memory: 7836kb

input:

2 1
1
0 2

output:

5

result:

ok 1 number(s): "5"

Test #24:

score: 0
Accepted
time: 1ms
memory: 7772kb

input:

3 1
2 1
2 3

output:

21

result:

ok 1 number(s): "21"

Test #25:

score: 0
Accepted
time: 1ms
memory: 7780kb

input:

4 1
2 1 3
0 1

output:

85

result:

ok 1 number(s): "85"

Test #26:

score: 0
Accepted
time: 1ms
memory: 7716kb

input:

5 1
4 1 3 2
0 5

output:

341

result:

ok 1 number(s): "341"

Test #27:

score: 0
Accepted
time: 1ms
memory: 9812kb

input:

6 1
5 1 2 3 4
0 2

output:

1260

result:

ok 1 number(s): "1260"

Test #28:

score: 0
Accepted
time: 1ms
memory: 8008kb

input:

7 1
2 1 6 4 3 5
3 4

output:

5545

result:

ok 1 number(s): "5545"

Test #29:

score: 0
Accepted
time: 1ms
memory: 7976kb

input:

8 1
5 4 2 1 3 6 7
4 7

output:

14745

result:

ok 1 number(s): "14745"

Test #30:

score: 0
Accepted
time: 1ms
memory: 9820kb

input:

9 1
3 2 1 8 7 6 4 5
3 6

output:

101031

result:

ok 1 number(s): "101031"

Test #31:

score: 0
Accepted
time: 0ms
memory: 9756kb

input:

10 1
7 4 2 1 3 5 6 9 8
9 10

output:

373889

result:

ok 1 number(s): "373889"

Test #32:

score: -100
Wrong Answer
time: 1ms
memory: 7940kb

input:

10 2
1 9 8 5 4 3 2 7 6
1 8
2 5

output:

260114

result:

wrong answer 1st numbers differ - expected: '261049', found: '260114'