QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#337094 | #8279. Segment Tree | ucup-team987# | WA | 1ms | 10008kb | C++20 | 24.2kb | 2024-02-25 03:41:37 | 2024-02-25 03:41:37 |
Judging History
answer
#include<iostream>
#include<vector>
#include<cassert>
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
struct dsu {
public:
dsu() : _n(0) {}
explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
std::vector<int> parent_or_size;
};
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
using namespace std;
using mint=atcoder::modint998244353;
struct dat{
mint A,B;
};
dat op(dat a,dat b)
{
a.A+=b.A;
a.B+=b.B;
return a;
}
dat e(){return(dat){mint(0),mint(0)};}
dat mp(mint f,dat x)
{
x.A*=f;
x.B*=f;
return x;
}
mint cmp(mint f,mint g){return f*g;}
mint id(){return mint(1);}
int N,M;
int X[2<<17],L[2<<17],R[2<<17];
mint val[2<<17];
void dfsLR(int l,int r,int&id)
{
if(l+1==r)return;
L[id]=l,R[id]=r;
int m=X[id];
id++;
dfsLR(l,m,id);
dfsLR(m,r,id);
}
bool vis[2<<17];
int toL[2<<17],toR[2<<17];
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin>>N>>M;
for(int i=0;i<N-1;i++)cin>>X[i];
{
int id=0;
dfsLR(0,N,id);
assert(id==N-1);
//for(int i=0;i<N-1;i++)cout<<L[i]<<" "<<R[i]<<endl;
}
atcoder::dsu uf(N+1);
for(int i=0;i<M;i++)
{
int l,r;cin>>l>>r;
uf.merge(l,r);
vis[l]=vis[r]=true;
}
toL[0]=-1;
for(int i=0;i<N;i++)
{
toL[i+1]=toL[i];
if(vis[i])toL[i+1]=i;
}
toR[N]=N+1;
for(int i=N;i--;)
{
toR[i]=toR[i+1];
if(vis[i+1])toR[i]=i+1;
}
vector<pair<int,int> >T;
for(vector<int>g:uf.groups())if(g.size()>=2)
{
int mx=0,mn=N;
for(int u:g)mx=max(mx,u),mn=min(mn,u);
T.push_back(make_pair(mn,mx));
}
sort(T.begin(),T.end());
vector<dat>init(N,(dat){mint(1),mint(1)});
for(int i=0;i<N;i++)val[i]=1;
for(int i=0;i<T.size();)
{
int l=T[i].first,r=T[i].second;
i++;
while(i<T.size()&&T[i].first<=r)
{
r=max(r,T[i].second);
i++;
}
for(int j=l;j<r;j++)init[j].B=mint(0);
}
atcoder::lazy_segtree<dat,op,e,mint,mp,cmp,id>seg(init);
for(int i=N-1;i--;)
{
int l=L[i],r=R[i],m=X[i];
assert(l<m&&m<r);
mint x=val[l],y=val[m];
if(m-l<=r-m)
{
for(int j=l;j<m;j++)
{
int nr=toR[j];
if(nr<m)nr=m;
if(nr>r)nr=r;
dat t=seg.get(j);
mint f=seg.prod(m,nr).A+seg.prod(nr,r).B*0+y;
t.A*=f;t.B*=f;
seg.set(j,t);
}
seg.apply(m,r,x);
}
else
{
for(int j=m;j<r;j++)
{
int nl=toL[j+1];
//cout<<"nl = "<<nl<<endl;
if(nl<l)nl=l;
if(nl>m)nl=m;
dat t=seg.get(j);
mint f=seg.prod(l,nl).B*0+seg.prod(nl,m).A+x;
//cout<<f.val()<<endl;
t.A*=f;t.B*=f;
seg.set(j,t);
}
seg.apply(l,m,y);
}
val[l]=x*y*2+seg.prod(l,r).A;
//cout<<"(l, m, r) = ("<<l<<", "<<m<<", "<<r<<")"<<endl;
//cout<<"val = ";for(int j=0;j<N;j++)cout<<val[j].val()<<" ";cout<<endl;
//cout<<"seg = ";for(int j=0;j<N;j++)cout<<seg.get(j).A.val()<<" ";cout<<endl;
}
mint ans=val[0]+seg.all_prod().B;
cout<<ans.val()<<endl;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 7776kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 0ms
memory: 7736kb
input:
2 1 1 1 2
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 1ms
memory: 7768kb
input:
5 2 2 1 4 3 1 3 2 5
output:
193
result:
ok 1 number(s): "193"
Test #4:
score: 0
Accepted
time: 0ms
memory: 7768kb
input:
10 10 5 2 1 3 4 7 6 8 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
70848
result:
ok 1 number(s): "70848"
Test #5:
score: 0
Accepted
time: 0ms
memory: 7780kb
input:
2 2 1 0 1 0 2
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 0ms
memory: 7780kb
input:
3 3 1 2 0 1 0 2 0 3
output:
14
result:
ok 1 number(s): "14"
Test #7:
score: 0
Accepted
time: 0ms
memory: 7928kb
input:
4 4 1 2 3 0 1 0 2 0 3 0 4
output:
48
result:
ok 1 number(s): "48"
Test #8:
score: 0
Accepted
time: 1ms
memory: 7776kb
input:
5 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5
output:
164
result:
ok 1 number(s): "164"
Test #9:
score: 0
Accepted
time: 1ms
memory: 7712kb
input:
6 6 4 2 1 3 5 0 1 0 2 0 3 0 4 0 5 0 6
output:
544
result:
ok 1 number(s): "544"
Test #10:
score: 0
Accepted
time: 1ms
memory: 7768kb
input:
7 7 3 2 1 5 4 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7
output:
1856
result:
ok 1 number(s): "1856"
Test #11:
score: 0
Accepted
time: 1ms
memory: 7656kb
input:
8 8 3 1 2 4 7 5 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
output:
6528
result:
ok 1 number(s): "6528"
Test #12:
score: 0
Accepted
time: 1ms
memory: 7780kb
input:
9 9 3 1 2 4 7 6 5 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
output:
21520
result:
ok 1 number(s): "21520"
Test #13:
score: 0
Accepted
time: 1ms
memory: 7768kb
input:
10 10 8 2 1 3 4 6 5 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
71296
result:
ok 1 number(s): "71296"
Test #14:
score: 0
Accepted
time: 1ms
memory: 7736kb
input:
2 3 1 0 1 0 2 1 2
output:
4
result:
ok 1 number(s): "4"
Test #15:
score: 0
Accepted
time: 1ms
memory: 7808kb
input:
3 6 1 2 0 1 0 2 0 3 1 2 1 3 2 3
output:
14
result:
ok 1 number(s): "14"
Test #16:
score: 0
Accepted
time: 1ms
memory: 7768kb
input:
4 10 1 2 3 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4 3 4
output:
48
result:
ok 1 number(s): "48"
Test #17:
score: 0
Accepted
time: 0ms
memory: 7764kb
input:
5 15 1 4 3 2 0 1 0 2 0 3 0 4 0 5 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5
output:
164
result:
ok 1 number(s): "164"
Test #18:
score: 0
Accepted
time: 1ms
memory: 9744kb
input:
6 21 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5 0 6 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6
output:
544
result:
ok 1 number(s): "544"
Test #19:
score: 0
Accepted
time: 1ms
memory: 7764kb
input:
7 28 4 1 2 3 6 5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 1 2 1 3 1 4 1 5 1 6 1 7 2 3 2 4 2 5 2 6 2 7 3 4 3 5 3 6 3 7 4 5 4 6 4 7 5 6 5 7 6 7
output:
1912
result:
ok 1 number(s): "1912"
Test #20:
score: 0
Accepted
time: 1ms
memory: 7764kb
input:
8 36 5 2 1 3 4 7 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 1 2 1 3 1 4 1 5 1 6 1 7 1 8 2 3 2 4 2 5 2 6 2 7 2 8 3 4 3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8 5 6 5 7 5 8 6 7 6 8 7 8
output:
6304
result:
ok 1 number(s): "6304"
Test #21:
score: 0
Accepted
time: 1ms
memory: 7656kb
input:
9 45 6 2 1 4 3 5 7 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 4 3 5 3 6 3 7 3 8 3 9 4 5 4 6 4 7 4 8 4 9 5 6 5 7 5 8 5 9 6 7 6 8 6 9 7 8 7 9 8 9
output:
20736
result:
ok 1 number(s): "20736"
Test #22:
score: 0
Accepted
time: 1ms
memory: 7932kb
input:
10 55 6 3 2 1 4 5 8 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 5 4 6 4 7 4 8 4 9 4 10 5 6 5 7 5 8 5 9 5 10 6 7 6 8 6 9 6 10 7 8 7 9 7 10 8 9 8 10 9 10
output:
70784
result:
ok 1 number(s): "70784"
Test #23:
score: 0
Accepted
time: 0ms
memory: 7708kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #24:
score: 0
Accepted
time: 1ms
memory: 7760kb
input:
3 1 2 1 2 3
output:
21
result:
ok 1 number(s): "21"
Test #25:
score: 0
Accepted
time: 1ms
memory: 8000kb
input:
4 1 2 1 3 0 1
output:
85
result:
ok 1 number(s): "85"
Test #26:
score: 0
Accepted
time: 0ms
memory: 8004kb
input:
5 1 4 1 3 2 0 5
output:
341
result:
ok 1 number(s): "341"
Test #27:
score: 0
Accepted
time: 0ms
memory: 10008kb
input:
6 1 5 1 2 3 4 0 2
output:
1260
result:
ok 1 number(s): "1260"
Test #28:
score: -100
Wrong Answer
time: 0ms
memory: 7740kb
input:
7 1 2 1 6 4 3 5 3 4
output:
4485
result:
wrong answer 1st numbers differ - expected: '5545', found: '4485'