QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#337058 | #8286. Stacks | ucup-team987# | ML | 0ms | 0kb | C++20 | 22.3kb | 2024-02-25 02:30:37 | 2024-02-25 02:30:38 |
answer
/**
* date : 2024-02-25 03:30:28
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
// LazySegmentTree
template <typename T, typename E, typename F, typename G, typename H>
struct LazySegmentTree {
int n, height;
F f;
G g;
H h;
T ti;
E ei;
vector<T> dat;
vector<E> laz;
LazySegmentTree(int _n, F _f, G _g, H _h, T _ti, E _ei)
: f(_f), g(_g), h(_h), ti(_ti), ei(_ei) {
init(_n);
}
LazySegmentTree(const vector<T> &v, F _f, G _g, H _h, T _ti, E _ei)
: f(_f), g(_g), h(_h), ti(_ti), ei(_ei) {
init((int)v.size());
build(v);
}
void init(int _n) {
n = 1;
height = 0;
while (n < _n) n <<= 1, height++;
dat.assign(2 * n, ti);
laz.assign(2 * n, ei);
}
void build(const vector<T> &v) {
int _n = v.size();
init(_n);
for (int i = 0; i < _n; i++) dat[n + i] = v[i];
for (int i = n - 1; i; i--)
dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
}
inline T reflect(int k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }
inline void eval(int k) {
if (laz[k] == ei) return;
laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]);
laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);
dat[k] = reflect(k);
laz[k] = ei;
}
inline void thrust(int k) {
for (int i = height; i; i--) eval(k >> i);
}
inline void recalc(int k) {
while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
}
void update(int a, int b, E x) {
if (a >= b) return;
thrust(a += n);
thrust(b += n - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) laz[l] = h(laz[l], x), l++;
if (r & 1) --r, laz[r] = h(laz[r], x);
}
recalc(a);
recalc(b);
}
void set_val(int a, T x) {
thrust(a += n);
dat[a] = x;
laz[a] = ei;
recalc(a);
}
T get_val(int a) {
thrust(a += n);
return reflect(a);
}
T query(int a, int b) {
if (a >= b) return ti;
thrust(a += n);
thrust(b += n - 1);
T vl = ti, vr = ti;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, reflect(l++));
if (r & 1) vr = f(reflect(--r), vr);
}
return f(vl, vr);
}
};
using namespace Nyaan;
// https://ei1333.github.io/library/structure/bbst/persistent-red-black-tree.hpp
namespace ei1333 {
template <class T>
struct VectorPool {
vector<T> pool;
vector<T *> stock;
int ptr;
VectorPool() = default;
VectorPool(int sz) : pool(sz), stock(sz) {}
inline T *alloc() { return stock[--ptr]; }
inline void free(T *t) { stock[ptr++] = t; }
void clear() {
ptr = (int)pool.size();
for (int i = 0; i < (int)pool.size(); i++) stock[i] = &pool[i];
}
};
/**
* @brief Weight-Balanced-Tree(重み平衡木)
*/
template <typename Monoid, typename F>
struct WeightBalancedTree {
public:
struct Node {
Node *l, *r;
int cnt;
Monoid key, sum;
Node() {}
Node(const Monoid &k) : key(k), sum(k), l(nullptr), r(nullptr), cnt(1) {}
Node(Node *l, Node *r, const Monoid &k) : key(k), l(l), r(r) {}
bool is_leaf() { return !l || !r; }
};
private:
Node *update(Node *t) {
t->cnt = count(t->l) + count(t->r) + t->is_leaf();
t->sum = f(f(sum(t->l), t->key), sum(t->r));
return t;
}
inline Node *alloc(Node *l, Node *r) {
auto t = &(*pool.alloc() = Node(l, r, M1));
return update(t);
}
Node *submerge(Node *l, Node *r) {
if (count(l) > count(r) * 4) {
l = clone(l);
auto nl = clone(l->l);
auto nr = submerge(l->r, r);
if (count(nl) * 4 >= count(nr)) {
l->r = nr;
return update(l);
}
if (count(nr->l) * 3 <= count(nr->r) * 5) {
l->r = nr->l;
nr->l = l;
update(l);
return update(nr);
}
Node *t = clone(nr->l);
l->r = nr->l->l;
update(l);
nr->l = nr->l->r;
update(nr);
t->l = l;
t->r = nr;
return update(t);
}
if (count(l) * 4 < count(r)) {
r = clone(r);
auto nl = submerge(l, r->l);
auto nr = clone(r->r);
if (count(nl) <= count(nr) * 4) {
r->l = nl;
return update(r);
}
if (count(nl->l) * 5 >= count(nl->r) * 3) {
r->l = nl->r;
nl->r = r;
update(r);
return update(nl);
}
Node *t = clone(nl->r);
r->l = nl->r->r;
update(r);
nl->r = nl->r->l;
update(nl);
t->r = r;
t->l = nl;
return update(t);
}
return alloc(l, r);
}
Node *build(int l, int r, const vector<Monoid> &v) {
if (l + 1 >= r) return alloc(v[l]);
return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
}
void dump(Node *r, typename vector<Monoid>::iterator &it) {
if (r->is_leaf()) {
*it++ = r->key;
return;
}
dump(r->l, it);
dump(r->r, it);
}
virtual Node *clone(Node *t) { return t; }
Node *merge(Node *l) { return l; }
Monoid query(Node *t, int a, int b, int l, int r) {
if (r <= a || b <= l) return M1;
if (a <= l && r <= b) return t->sum;
return f(query(t->l, a, b, l, l + count(t->l)),
query(t->r, a, b, r - count(t->r), r));
}
public:
VectorPool<Node> pool;
const F f;
const Monoid M1;
WeightBalancedTree(int sz, const F &f, const Monoid &M1)
: pool(sz), M1(M1), f(f) {
pool.clear();
}
inline Node *alloc(const Monoid &key) { return &(*pool.alloc() = Node(key)); }
static inline int count(const Node *t) { return t ? t->cnt : 0; }
inline const Monoid &sum(const Node *t) { return t ? t->sum : M1; }
pair<Node *, Node *> split(Node *t, int k) {
if (!t) return {nullptr, nullptr};
if (k == 0) return {nullptr, t};
if (k >= count(t)) return {t, nullptr};
t = clone(t);
Node *l = t->l, *r = t->r;
pool.free(t);
if (k < count(l)) {
auto pp = split(l, k);
return {pp.first, merge(pp.second, r)};
}
if (k > count(l)) {
auto pp = split(r, k - count(l));
return {merge(l, pp.first), pp.second};
}
return {l, r};
}
// (first の sum が k 以下) で切る
pair<Node *, Node *> split_by_sum(Node *t, ll k) {
if (!t) return {nullptr, nullptr};
if (k == 0) return {nullptr, t};
if (k >= sum(t).first) return {t, nullptr};
if (t->is_leaf()) return {nullptr, t};
t = clone(t);
Node *l = t->l, *r = t->r;
pool.free(t);
if (k < sum(l).first) {
auto pp = split_by_sum(l, k);
return {pp.first, merge(pp.second, r)};
}
if (k > sum(l).first) {
auto pp = split_by_sum(r, k - sum(l).first);
return {merge(l, pp.first), pp.second};
}
return {l, r};
}
// 前 k 個の sum
ll calc_sum(Node *t, ll k) {
if (!t) return 0;
if (k == 0) return 0;
if (sum(t).first <= k) return sum(t).second;
if (t->is_leaf()) {
auto [num, val] = sum(t);
return val / num * k;
}
auto [lnum, lsum] = sum(t->l);
if (k < lnum) return calc_sum(t->l, k);
if (k > lnum) return calc_sum(t->r, k - lnum) + lsum;
return lsum;
}
tuple<Node *, Node *, Node *> split3(Node *t, int a, int b) {
auto x = split(t, a);
auto y = split(x.second, b - a);
return make_tuple(x.first, y.first, y.second);
}
template <typename... Args>
Node *merge(Node *l, Args... rest) {
Node *r = merge(rest...);
if (!l || !r) return l ? l : r;
return submerge(l, r);
}
Node *build(const vector<Monoid> &v) { return build(0, (int)v.size(), v); }
vector<Monoid> dump(Node *r) {
vector<Monoid> v((size_t)count(r));
auto it = begin(v);
dump(r, it);
return v;
}
string to_string(Node *r) {
auto s = dump(r);
string ret;
for (int i = 0; i < s.size(); i++) {
ret += std::to_string(s[i]);
ret += ", ";
}
return ret;
}
void insert(Node *&t, int k, const Monoid &v) {
auto x = split(t, k);
t = merge(merge(x.first, alloc(v)), x.second);
}
Monoid erase(Node *&t, int k) {
auto x = split(t, k);
auto y = split(x.second, 1);
auto v = y.first->c;
pool.free(y.first);
t = merge(x.first, y.second);
return v;
}
Monoid query(Node *t, int a, int b) { return query(t, a, b, 0, count(t)); }
void set_element(Node *&t, int k, const Monoid &x) {
t = clone(t);
if (t->is_leaf()) {
t->key = t->sum = x;
return;
}
if (k < count(t->l))
set_element(t->l, k, x);
else
set_element(t->r, k - count(t->l), x);
t = update(t);
}
void push_front(Node *&t, const Monoid &v) { t = merge(alloc(v), t); }
void push_back(Node *&t, const Monoid &v) { t = merge(t, alloc(v)); }
Monoid pop_front(Node *&t) {
auto ret = split(t, 1);
t = ret.second;
return ret.first->key;
}
Monoid pop_back(Node *&t) {
auto ret = split(t, count(t) - 1);
t = ret.first;
return ret.second->key;
}
};
/**
* @brief Persistent-Weight-Balanced-Tree(永続重み平衡木)
*/
template <typename Monoid, typename F, size_t FULL = 1000>
struct PersistentWeightBalancedTree : WeightBalancedTree<Monoid, F> {
using WBT = WeightBalancedTree<Monoid, F>;
using WBT::WeightBalancedTree;
using Node = typename WBT::Node;
private:
Node *clone(Node *t) override { return &(*WBT::pool.alloc() = *t); }
public:
Node *rebuild(Node *r) {
auto ret = WBT::dump(r);
WBT::pool.clear();
return WBT::build(ret);
}
bool almost_full() const { return this->pool.ptr < FULL; }
};
template <typename E, typename H>
struct DualSegmentTree {
int sz, height;
vector<E> lazy;
const H h;
const E ei;
DualSegmentTree(int n, const H h, const E &ei) : h(h), ei(ei) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
lazy.assign(2 * sz, ei);
}
inline void propagate(int k) {
if (lazy[k] != ei) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
lazy[k] = ei;
}
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const E &x) {
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = h(lazy[l], x), ++l;
if (r & 1) --r, lazy[r] = h(lazy[r], x);
}
}
E operator[](int k) {
thrust(k += sz);
return lazy[k];
}
};
template <typename E, typename H>
DualSegmentTree<E, H> get_dual_segment_tree(int N, const H &h, const E &ei) {
return {N, h, ei};
}
} // namespace ei1333
void q() {
inl(N, Q);
// (要素の個数, 総和) の tuple
auto ff = [&](pl a, pl b) -> pl { return a + b; };
pl ti{0, 0};
ei1333::PersistentWeightBalancedTree<pl, decltype(ff), TEN(6)> rbt(
1.7 * TEN(7), ff, ti);
using Node = typename decltype(rbt)::Node;
using Ptr = Node *;
using E = pair<ll, Ptr>;
E ei{0, nullptr};
// 先頭 k 個までで cut して先頭側だけを取り出す
auto cut = [&](Ptr p, ll k) -> Ptr {
auto [l, r] = rbt.split_by_sum(p, k);
if (rbt.sum(l).first < k and rbt.sum(r).first > 0) {
ll lack = k - rbt.sum(l).first;
auto m = rbt.query(r, 0, 1);
ll num = m.first;
ll val = m.second / m.first;
assert(0 < lack and lack < num);
rbt.push_back(l, mkp(lack, lack * val));
}
return l;
};
//
auto h = [&](E a, E b) -> E {
if (b.fi == 0) return mkp(a.fi, rbt.merge(a.se, b.se));
ll s = rbt.sum(a.se).first;
if (s <= b.fi) return mkp(a.fi + b.fi - s, b.se);
auto l = cut(a.se, s - b.fi);
return mkp(a.fi, rbt.merge(l, b.se));
};
ei1333::DualSegmentTree seg(N, h, ei);
trc2(sizeof(Node));
rep(i, Q) {
ini(cmd);
trc(cmd);
E e{0, nullptr};
if (cmd == 1) {
inl(l, r, x, y);
--l;
rbt.push_back(e.se, {x, x * y});
seg.update(l, r, e);
} else if (cmd == 2) {
inl(l, r, x);
--l;
e.fi = x;
seg.update(l, r, e);
} else {
inl(k, p, q);
--k, --p;
auto [val, root] = seg[k];
ll ans = rbt.calc_sum(root, q) - rbt.calc_sum(root, p);
out(ans);
}
if (i % TEN(3) == 0) {
trc2(i, rbt.pool.ptr);
}
}
trc2("OK");
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 0
Memory Limit Exceeded
input:
4907 4910 2 763 3330 1 3 307 1 1 1 2262 3430 22699 89397 1 1915 4000 51541 67587 2 212 2990 9763 2 1086 2162 1 2 1813 4496 16760 1 51 2796 68005 99390 1 1267 1519 74236 66178 3 1768 23808 54314 2 900 4122 27758 3 3287 17350 28989 2 3277 4024 3633 2 444 4866 1 2 353 4219 1061 1 987 3141 99906 17320 2...
output:
0 3032090730 903396180 471569175 200648623 98486697 647114751 123945 50793012 61782451 0 0 0 762429740 321140700 871619914 536311874 5361094892 0 1792521566 6640518748 2415375780 249435711 225987900 5250788038 1145132507 140071334 0 118545795 3086405469 5646099271 84280112 1232466642 4992966775 7968...