QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#336958 | #8276. Code Congestion | ucup-team987# | WA | 1ms | 3816kb | C++23 | 16.0kb | 2024-02-24 23:58:22 | 2024-02-24 23:58:23 |
Judging History
answer
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using mint = atcoder::modint998244353;
void solve() {
int n, T;
scan(n, T);
std::vector<int> a(n);
scan(a);
std::vector<int> t(n);
scan(t);
if (std::accumulate(t.begin(), t.end(), 0) <= T) {
print(std::accumulate(a.begin(), a.end(), 0) * mint(2).pow(n));
return;
}
std::vector pref0(n + 1, std::vector<mint>(T + 1));
std::vector pref1(n + 1, std::vector<mint>(T + 1));
pref0[0][0] = 1;
for (const int i : rep(n)) {
ranges::copy(pref0[i], pref0[i + 1].begin());
ranges::copy(pref1[i], pref1[i + 1].begin());
for (const int j : rep(T - t[i] + 1)) {
pref0[i + 1][j + t[i]] += pref0[i][j];
pref1[i + 1][j + t[i]] += pref1[i][j] + pref0[i][j] * a[i];
}
}
std::vector suff0(n + 1, std::vector<mint>(T + 1));
std::vector suff1(n + 1, std::vector<mint>(T + 1));
suff0[n][0] = 1;
for (const int i : rep(n) | views::reverse) {
ranges::copy(suff0[i + 1], suff0[i].begin());
ranges::copy(suff1[i + 1], suff1[i].begin());
for (const int j : rep(T - t[i] + 1)) {
suff0[i][j + t[i]] += suff0[i + 1][j];
suff1[i][j + t[i]] += suff1[i + 1][j] + suff0[i + 1][j] * a[i];
}
}
mint ans = 0;
// 0 の場合
for (const int k : rep(n)) {
mint cur = 0;
for (const int j : rep1(T - t[k] + 1, T)) {
cur += pref1[k][j];
}
ans += cur * mint(2).pow(n - k - 1);
}
// 1 の場合
mint sum_a = 0;
for (const int k : rep(n)) {
mint cur = sum_a;
for (const int j : rep1(std::max(T - t[k] + 1, 0), T)) {
cur += suff1[k + 1][j];
}
ans += cur * mint(2).pow(k);
T -= t[k];
if (T < 0) {
break;
}
sum_a += a[k];
}
print(ans);
}
} // namespace
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::setprecision(DBL_DECIMAL_DIG);
solve();
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m,
unsigned long long a, unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x && (x = std::forward<U>(y), true);
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y && (x = std::forward<U>(y), true);
}
template <std::signed_integral T = int>
T inf() {
T ret;
std::memset(&ret, 0x3f, sizeof(ret));
return ret;
}
template <std::floating_point T>
T inf() {
return std::numeric_limits<T>::infinity();
}
template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T>
concept Tuple = std::__is_tuple_like<T>::value && !Range<T>;
namespace std {
istream& operator>>(istream& is, Range auto&& r) {
for (auto&& e : r) {
is >> e;
}
return is;
}
istream& operator>>(istream& is, Tuple auto&& t) {
return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
ostream& operator<<(ostream& os, Range auto&& r) {
for (string_view sep = ""; auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
ostream& operator<<(ostream& os, Tuple auto&& t) {
const auto f = [&](auto&... xs) -> ostream& {
[[maybe_unused]] string_view sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace std
void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }
template <class F>
class fix {
public:
explicit fix(F f) : f_(std::move(f)) {}
decltype(auto) operator()(auto&&... xs) const {
return f_(std::ref(*this), std::forward<decltype(xs)>(xs)...);
}
private:
F f_;
};
inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
namespace ranges = std::ranges;
namespace views = std::views;
using i64 = std::int64_t;
#endif // __INCLUDE_LEVEL__
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3816kb
input:
3 3 2 3 4 1 2 2
output:
40
result:
ok 1 number(s): "40"
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 3604kb
input:
13 96 56231 258305 150103 164646 232643 37457 239584 192517 167805 215281 159832 98020 141006 54 1 38 1 4 1 4 11 1 4 8 22 1
output:
673107780
result:
wrong answer 1st numbers differ - expected: '745634757', found: '673107780'