QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#336958#8276. Code Congestionucup-team987#WA 1ms3816kbC++2316.0kb2024-02-24 23:58:222024-02-24 23:58:23

Judging History

你现在查看的是最新测评结果

  • [2024-02-24 23:58:23]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:3816kb
  • [2024-02-24 23:58:22]
  • 提交

answer

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

namespace {

using mint = atcoder::modint998244353;

void solve() {
  int n, T;
  scan(n, T);
  std::vector<int> a(n);
  scan(a);
  std::vector<int> t(n);
  scan(t);

  if (std::accumulate(t.begin(), t.end(), 0) <= T) {
    print(std::accumulate(a.begin(), a.end(), 0) * mint(2).pow(n));
    return;
  }

  std::vector pref0(n + 1, std::vector<mint>(T + 1));
  std::vector pref1(n + 1, std::vector<mint>(T + 1));
  pref0[0][0] = 1;
  for (const int i : rep(n)) {
    ranges::copy(pref0[i], pref0[i + 1].begin());
    ranges::copy(pref1[i], pref1[i + 1].begin());
    for (const int j : rep(T - t[i] + 1)) {
      pref0[i + 1][j + t[i]] += pref0[i][j];
      pref1[i + 1][j + t[i]] += pref1[i][j] + pref0[i][j] * a[i];
    }
  }

  std::vector suff0(n + 1, std::vector<mint>(T + 1));
  std::vector suff1(n + 1, std::vector<mint>(T + 1));
  suff0[n][0] = 1;
  for (const int i : rep(n) | views::reverse) {
    ranges::copy(suff0[i + 1], suff0[i].begin());
    ranges::copy(suff1[i + 1], suff1[i].begin());
    for (const int j : rep(T - t[i] + 1)) {
      suff0[i][j + t[i]] += suff0[i + 1][j];
      suff1[i][j + t[i]] += suff1[i + 1][j] + suff0[i + 1][j] * a[i];
    }
  }

  mint ans = 0;
  // 0 の場合
  for (const int k : rep(n)) {
    mint cur = 0;
    for (const int j : rep1(T - t[k] + 1, T)) {
      cur += pref1[k][j];
    }
    ans += cur * mint(2).pow(n - k - 1);
  }
  // 1 の場合
  mint sum_a = 0;
  for (const int k : rep(n)) {
    mint cur = sum_a;
    for (const int j : rep1(std::max(T - t[k] + 1, 0), T)) {
      cur += suff1[k + 1][j];
    }
    ans += cur * mint(2).pow(k);

    T -= t[k];
    if (T < 0) {
      break;
    }
    sum_a += a[k];
  }

  print(ans);
}

}  // namespace

int main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  std::cout << std::setprecision(DBL_DECIMAL_DIG);

  solve();
}

#else  // __INCLUDE_LEVEL__

#include <bits/stdc++.h>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0) x += m;
  return x;
}

struct barrett {
  unsigned int _m;
  unsigned long long im;

  explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

  unsigned int umod() const { return _m; }

  unsigned int mul(unsigned int a, unsigned int b) const {
    unsigned long long z = a;
    z *= b;
    unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
    unsigned long long y = x * _m;
    return (unsigned int)(z - y + (z < y ? _m : 0));
  }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}

constexpr bool is_prime_constexpr(int n) {
  if (n <= 1) return false;
  if (n == 2 || n == 7 || n == 61) return true;
  if (n % 2 == 0) return false;
  long long d = n - 1;
  while (d % 2 == 0) d /= 2;
  constexpr long long bases[3] = {2, 7, 61};
  for (long long a : bases) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0) return {b, 0};

  long long s = b, t = a;
  long long m0 = 0, m1 = 1;

  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u;

    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  if (m0 < 0) m0 += b / s;
  return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
  if (m == 2) return 1;
  if (m == 167772161) return 3;
  if (m == 469762049) return 3;
  if (m == 754974721) return 11;
  if (m == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m,
                                      unsigned long long a, unsigned long long b) {
  unsigned long long ans = 0;
  while (true) {
    if (a >= m) {
      ans += n * (n - 1) / 2 * (a / m);
      a %= m;
    }
    if (b >= m) {
      ans += n * (b / m);
      b %= m;
    }

    unsigned long long y_max = a * n + b;
    if (y_max < m) break;
    n = (unsigned long long)(y_max / m);
    b = (unsigned long long)(y_max % m);
    std::swap(m, a);
  }
  return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
                                                       std::is_same<T, __int128>::value,
                                                   std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                                         std::is_same<T, unsigned __int128>::value,
                                                     std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
  using mint = static_modint;

 public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  static_modint(T v) {
    _v = (unsigned int)(v % umod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }

  friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

 private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

 public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0) x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    _v = (unsigned int)(v % mod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }

  friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

 private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

template <class T, class U = T>
bool chmin(T& x, U&& y) {
  return y < x && (x = std::forward<U>(y), true);
}

template <class T, class U = T>
bool chmax(T& x, U&& y) {
  return x < y && (x = std::forward<U>(y), true);
}

template <std::signed_integral T = int>
T inf() {
  T ret;
  std::memset(&ret, 0x3f, sizeof(ret));
  return ret;
}

template <std::floating_point T>
T inf() {
  return std::numeric_limits<T>::infinity();
}

template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;

template <class T>
concept Tuple = std::__is_tuple_like<T>::value && !Range<T>;

namespace std {

istream& operator>>(istream& is, Range auto&& r) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

istream& operator>>(istream& is, Tuple auto&& t) {
  return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}

ostream& operator<<(ostream& os, Range auto&& r) {
  for (string_view sep = ""; auto&& e : r) {
    os << exchange(sep, " ") << e;
  }
  return os;
}

ostream& operator<<(ostream& os, Tuple auto&& t) {
  const auto f = [&](auto&... xs) -> ostream& {
    [[maybe_unused]] string_view sep = "";
    ((os << exchange(sep, " ") << xs), ...);
    return os;
  };
  return apply(f, t);
}

template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
  int v;
  is >> v;
  x = T::raw(v);
  return is;
}

template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
  return os << x.val();
}

}  // namespace std

void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }

template <class F>
class fix {
 public:
  explicit fix(F f) : f_(std::move(f)) {}

  decltype(auto) operator()(auto&&... xs) const {
    return f_(std::ref(*this), std::forward<decltype(xs)>(xs)...);
  }

 private:
  F f_;
};

inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }

namespace ranges = std::ranges;
namespace views = std::views;

using i64 = std::int64_t;

#endif  // __INCLUDE_LEVEL__

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3816kb

input:

3 3
2 3 4
1 2 2

output:

40

result:

ok 1 number(s): "40"

Test #2:

score: -100
Wrong Answer
time: 0ms
memory: 3604kb

input:

13 96
56231 258305 150103 164646 232643 37457 239584 192517 167805 215281 159832 98020 141006
54 1 38 1 4 1 4 11 1 4 8 22 1

output:

673107780

result:

wrong answer 1st numbers differ - expected: '745634757', found: '673107780'