QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#336405 | #8279. Segment Tree | ucup-team133# | WA | 1ms | 3836kb | C++17 | 31.8kb | 2024-02-24 16:03:48 | 2024-02-24 16:03:49 |
Judging History
answer
// -fsanitize=undefined,
//#define _GLIBCXX_DEBUG
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>
#include <chrono>
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <algorithm>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
using namespace std;
using namespace atcoder;
using mint = modint998244353;
#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";
template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
template<class T>
bool chmin(T &a, T b){
if (a>b){
a = b;
return true;
}
return false;
}
template<class T>
bool chmax(T &a, T b){
if (a<b){
a = b;
return true;
}
return false;
}
template<class T>
T sum(vec<T> x){
T res=0;
for (auto e:x){
res += e;
}
return res;
}
template<class T>
void printv(vec<T> x){
for (auto e:x){
cout<<e<<" ";
}
cout<<endl;
}
template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
os << "(" << A.first <<", " << A.second << ")";
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
os << "set{";
for (auto a:S){
os << a;
auto it = S.find(a);
it++;
if (it!=S.end()){
os << ", ";
}
}
os << "}";
return os;
}
template<class T>
ostream& operator<<(ostream& os, const map<int,T>& A){
os << "map{";
for (auto e:A){
os << e.first;
os << ":";
os << e.second;
os << ", ";
}
os << "}";
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
os << "[";
rep(i,A.size()){
os << A[i];
if (i!=A.size()-1){
os << ", ";
}
}
os << "]" ;
return os;
}
ostream& operator<<(ostream& os, const mint& a){
os << a.val();
return os;
}
using S = int;
S op(S a,S b){
return min(a,b);
}
S e(){
return 1e9;
}
using S2 = mint;
S2 op2(S2 a,S2 b){
return a + b;
}
S2 e2(){
return 0;
}
using F = mint;
F composition(F f,F g){
return f * g;
}
S2 mapping(F f,S2 x){
return f * x;
}
F id(){
return 1;
}
void solve(){
int N,M;
cin>>N>>M;
vec<int> X(N-1);
rep(i,N-1) cin>>X[i];
vec<pair<int,int>> node_to_lr(2*N-1,{-1,-1});
vec<int> left_child(N-1),right_child(N-1);
auto dfs = [&](auto self,int v,pair<int,int> lr)->pair<int,int> {
if (lr.first == lr.second - 1){
int a = lr.first;
node_to_lr[N-1+a] = {a,a+1};
return {v-1,N-1+a};
};
node_to_lr[v] = lr;
auto [last,c1] = self(self,v+1,{lr.first,X[v]});
left_child[v] = c1;
auto [last2,c2] = self(self,last+1,{X[v],lr.second});
right_child[v] = c2;
return {last2,v};
};
dfs(dfs,0,{0,N});
//debug(node_to_lr);
vec<set<int>> need_left(2*N-1),need_right(2*N-1);
vec<int> need_segment(2*N-1,0);
segtree<S,op,e> seg(N);
rep(i,N-1){
seg.set(X[i],i);
}
rep(i,M){
int L,R;
cin>>L>>R;
if (R-L==1){
need_segment[N-1+L] = 1;
continue;
}
int idx = seg.prod(L+1,R);
//debug(idx);
if (node_to_lr[idx].first == L && node_to_lr[idx].second == R){
need_segment[idx] = 1;
continue;
}
int lc = left_child[idx],rc = right_child[idx];
need_right[rc].insert(R);
need_left[lc].insert(L);
}
auto dfs_need = [&](auto self,int v)->void {
if (N-1 <= v){
if (!need_right[v].empty() || !need_left[v].empty()){
need_segment[v] = 1;
}
return ;
}
while (!need_right[v].empty()){
auto r0 = *need_right[v].begin();
auto r1 = *need_right[v].rbegin();
if (r1 == node_to_lr[v].second){
need_segment[v] = 1;
need_right[v].erase(r1);
continue;
}
if (r0 <= X[v] && X[v] < r1){
need_segment[left_child[v]] = 1;
need_right[left_child[v]].insert(r0);
need_right[right_child[v]].insert(r1);
need_right[v].erase(r0);
need_right[v].erase(r1);
continue;
}
if (r0 <= X[v]){
if (need_right[left_child[v]].size() < need_right[v].size()) swap(need_right[left_child[v]],need_right[v]);
for (auto r:need_right[v]){
need_right[left_child[v]].insert(r);
}
}
else if (X[v] < r1){
need_segment[left_child[v]] = 1;
if (need_right[right_child[v]].size() < need_right[v].size()) swap(need_right[right_child[v]],need_right[v]);
for (auto r:need_right[v]){
need_right[right_child[v]].insert(r);
}
}
break;
}
while (!need_left[v].empty()){
auto l0 = *need_left[v].begin();
auto l1 = *need_left[v].rbegin();
if (l0 == node_to_lr[v].first){
need_segment[v] = 1;
need_left[v].erase(l0);
continue;
}
if (X[v] <= l1 && l0 < X[v]){
need_segment[right_child[v]] = 1;
need_left[left_child[v]].insert(l0);
need_left[right_child[v]].insert(l1);
need_left[v].erase(l0);
need_left[v].erase(l1);
continue;
}
if (X[v] <= l1){
if (need_left[right_child[v]].size() < need_left[v].size()) swap(need_left[right_child[v]],need_left[v]);
for (auto l:need_left[v]){
need_left[right_child[v]].insert(l);
}
}
else{
if (need_left[left_child[v]].size() < need_left[v].size()) swap(need_left[left_child[v]],need_left[v]);
need_segment[right_child[v]] = 1;
for (auto l:need_left[v]){
need_left[left_child[v]].insert(l);
}
}
break;
}
self(self,left_child[v]);
self(self,right_child[v]);
};
dfs_need(dfs_need,0);
//debug(node_to_lr);
//debug(need_segment);
/*
1:vの情報は求められる
2:vの情報はわからないが、部分木内で必要な情報はすべて求まっている
3:vの情報はわからず、vの情報が分かった場合ok
遷移
vをSに含める場合:
子が両方3の場合:out
子が片方2で片方3:out
これ以外:ok
vをSに含めない場合:
子が両方3の場合:out
子が片方3で片方1の場合:3に遷移
子が片方3で片方2の場合:out
子が両方1の場合:1に遷移
それ以外の場合:vの情報が必要なら3に遷移 そうでないなら2に遷移
*/
vec<mint> dp1(2*N-1,0);
vec<mint> dp2(2*N-1,0);
vec<mint> dp3_sum(2*N-1,0);
auto dfs_calc_dp = [&](auto self,int v)->void {
if (N-1 <= v){
if (need_segment[v]){
dp1[v] = 1;
dp3_sum[v] = 1;
}
else{
dp1[v] = 1;
dp2[v] = 1;
}
return ;
}
int lc = left_child[v],rc = right_child[v];
self(self,left_child[v]);
self(self,right_child[v]);
dp1[v] += (dp1[lc]+dp2[lc]+dp3_sum[lc]) * (dp1[rc]+dp2[rc]+dp3_sum[rc]) - (dp3_sum[lc] * dp3_sum[rc] + dp3_sum[lc] * dp2[rc] + dp2[lc] * dp3_sum[rc]);
dp3_sum[v] += dp1[rc] * dp3_sum[lc] + dp1[lc] * dp3_sum[rc];
dp1[v] += dp1[lc] * dp1[rc];
if (need_segment[v]){
dp3_sum[v] += (dp1[lc]+dp2[lc]) * (dp1[rc] + dp2[rc]) - dp1[lc] * dp1[rc];
}
else{
dp2[v] = (dp1[lc]+dp2[lc]) * (dp1[rc] + dp2[rc]) - dp1[lc] * dp1[rc];
}
};
dfs_calc_dp(dfs_calc_dp,0);
//debug(dp1);
//debug(dp2);
//debug(dp3);
mint ans = dp1[0] + dp2[0];
cout << ans << "\n";
}
int main(){
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int T = 1;
//cin>>T;
while (T--){
solve();
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3836kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3612kb
input:
2 1 1 1 2
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
5 2 2 1 4 3 1 3 2 5
output:
193
result:
ok 1 number(s): "193"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
10 10 5 2 1 3 4 7 6 8 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
70848
result:
ok 1 number(s): "70848"
Test #5:
score: 0
Accepted
time: 1ms
memory: 3512kb
input:
2 2 1 0 1 0 2
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 1ms
memory: 3768kb
input:
3 3 1 2 0 1 0 2 0 3
output:
14
result:
ok 1 number(s): "14"
Test #7:
score: 0
Accepted
time: 1ms
memory: 3768kb
input:
4 4 1 2 3 0 1 0 2 0 3 0 4
output:
48
result:
ok 1 number(s): "48"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
5 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5
output:
164
result:
ok 1 number(s): "164"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3572kb
input:
6 6 4 2 1 3 5 0 1 0 2 0 3 0 4 0 5 0 6
output:
544
result:
ok 1 number(s): "544"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3556kb
input:
7 7 3 2 1 5 4 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7
output:
1856
result:
ok 1 number(s): "1856"
Test #11:
score: 0
Accepted
time: 1ms
memory: 3572kb
input:
8 8 3 1 2 4 7 5 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
output:
6528
result:
ok 1 number(s): "6528"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3784kb
input:
9 9 3 1 2 4 7 6 5 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
output:
21520
result:
ok 1 number(s): "21520"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3556kb
input:
10 10 8 2 1 3 4 6 5 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
71296
result:
ok 1 number(s): "71296"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
2 3 1 0 1 0 2 1 2
output:
4
result:
ok 1 number(s): "4"
Test #15:
score: 0
Accepted
time: 0ms
memory: 3548kb
input:
3 6 1 2 0 1 0 2 0 3 1 2 1 3 2 3
output:
14
result:
ok 1 number(s): "14"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3556kb
input:
4 10 1 2 3 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4 3 4
output:
48
result:
ok 1 number(s): "48"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3788kb
input:
5 15 1 4 3 2 0 1 0 2 0 3 0 4 0 5 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5
output:
164
result:
ok 1 number(s): "164"
Test #18:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
6 21 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5 0 6 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6
output:
544
result:
ok 1 number(s): "544"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3760kb
input:
7 28 4 1 2 3 6 5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 1 2 1 3 1 4 1 5 1 6 1 7 2 3 2 4 2 5 2 6 2 7 3 4 3 5 3 6 3 7 4 5 4 6 4 7 5 6 5 7 6 7
output:
1912
result:
ok 1 number(s): "1912"
Test #20:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
8 36 5 2 1 3 4 7 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 1 2 1 3 1 4 1 5 1 6 1 7 1 8 2 3 2 4 2 5 2 6 2 7 2 8 3 4 3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8 5 6 5 7 5 8 6 7 6 8 7 8
output:
6304
result:
ok 1 number(s): "6304"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
9 45 6 2 1 4 3 5 7 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 4 3 5 3 6 3 7 3 8 3 9 4 5 4 6 4 7 4 8 4 9 5 6 5 7 5 8 5 9 6 7 6 8 6 9 7 8 7 9 8 9
output:
20736
result:
ok 1 number(s): "20736"
Test #22:
score: 0
Accepted
time: 1ms
memory: 3824kb
input:
10 55 6 3 2 1 4 5 8 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 5 4 6 4 7 4 8 4 9 4 10 5 6 5 7 5 8 5 9 5 10 6 7 6 8 6 9 6 10 7 8 7 9 7 10 8 9 8 10 9 10
output:
70784
result:
ok 1 number(s): "70784"
Test #23:
score: 0
Accepted
time: 1ms
memory: 3628kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
3 1 2 1 2 3
output:
21
result:
ok 1 number(s): "21"
Test #25:
score: 0
Accepted
time: 0ms
memory: 3552kb
input:
4 1 2 1 3 0 1
output:
85
result:
ok 1 number(s): "85"
Test #26:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
5 1 4 1 3 2 0 5
output:
341
result:
ok 1 number(s): "341"
Test #27:
score: -100
Wrong Answer
time: 0ms
memory: 3608kb
input:
6 1 5 1 2 3 4 0 2
output:
1155
result:
wrong answer 1st numbers differ - expected: '1260', found: '1155'