QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#336278 | #8279. Segment Tree | ucup-team3099# | WA | 0ms | 3920kb | C++23 | 32.1kb | 2024-02-24 14:26:26 | 2024-02-24 14:26:27 |
Judging History
answer
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
template<class data_t, data_t _mod>
struct modular_fixed_base{
#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)
#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)
static_assert(IS_UNSIGNED(data_t));
static_assert(_mod >= 1);
static constexpr bool VARIATE_MOD_FLAG = false;
static constexpr data_t mod(){
return _mod;
}
template<class T>
static vector<modular_fixed_base> precalc_power(T base, int SZ){
vector<modular_fixed_base> res(SZ + 1, 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
return res;
}
static vector<modular_fixed_base> _INV;
static void precalc_inverse(int SZ){
if(_INV.empty()) _INV.assign(2, 1);
for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
}
// _mod must be a prime
static modular_fixed_base _primitive_root;
static modular_fixed_base primitive_root(){
if(_primitive_root) return _primitive_root;
if(_mod == 2) return _primitive_root = 1;
if(_mod == 998244353) return _primitive_root = 3;
data_t divs[20] = {};
divs[0] = 2;
int cnt = 1;
data_t x = (_mod - 1) / 2;
while(x % 2 == 0) x /= 2;
for(auto i = 3; 1LL * i * i <= x; i += 2){
if(x % i == 0){
divs[cnt ++] = i;
while(x % i == 0) x /= i;
}
}
if(x > 1) divs[cnt ++] = x;
for(auto g = 2; ; ++ g){
bool ok = true;
for(auto i = 0; i < cnt; ++ i){
if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){
ok = false;
break;
}
}
if(ok) return _primitive_root = g;
}
}
constexpr modular_fixed_base(){ }
modular_fixed_base(const double &x){ data = _normalize(llround(x)); }
modular_fixed_base(const long double &x){ data = _normalize(llround(x)); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){
int sign = x >= 0 ? 1 : -1;
data_t v = _mod <= sign * x ? sign * x % _mod : sign * x;
if(sign == -1 && v) v = _mod - v;
return v;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }
modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); }
modular_fixed_base &operator++(){ return *this += 1; }
modular_fixed_base &operator--(){ return *this += _mod - 1; }
modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }
modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }
modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }
modular_fixed_base &operator*=(const modular_fixed_base &rhs){
if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod;
else if constexpr(is_same_v<data_t, unsigned long long>){
long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);
data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);
}
else data = _normalize(data * rhs.data);
return *this;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base &inplace_power(T e){
if(e == 0) return *this = 1;
if(data == 0) return *this = {};
if(data == 1) return *this;
if(data == mod() - 1) return e % 2 ? *this : *this = -*this;
if(e < 0) *this = 1 / *this, e = -e;
modular_fixed_base res = 1;
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base power(T e) const{
return modular_fixed_base(*this).inplace_power(e);
}
modular_fixed_base &operator/=(const modular_fixed_base &otr){
make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;
if(a < _INV.size()) return *this *= _INV[a];
while(a){
make_signed_t<data_t> t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return *this *= u;
}
#define ARITHMETIC_OP(op, apply_op)\
modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; }
ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)
#undef ARITHMETIC_OP
#define COMPARE_OP(op)\
bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; }
COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)
#undef COMPARE_OP
friend istream &operator>>(istream &in, modular_fixed_base &number){
long long x;
in >> x;
number.data = modular_fixed_base::_normalize(x);
return in;
}
//#define _SHOW_FRACTION
friend ostream &operator<<(ostream &out, const modular_fixed_base &number){
out << number.data;
#if defined(LOCAL) && defined(_SHOW_FRACTION)
cerr << "(";
for(auto d = 1; ; ++ d){
if((number * d).data <= 1000000){
cerr << (number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
else if((-number * d).data <= 1000000){
cerr << "-" << (-number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
}
cerr << ")";
#endif
return out;
}
data_t data = 0;
#undef _SHOW_FRACTION
#undef IS_INTEGRAL
#undef IS_SIGNED
};
template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV;
template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root;
const unsigned int mod = (119 << 23) + 1; // 998244353
// const unsigned int mod = 1e9 + 7; // 1000000007
// const unsigned int mod = 1e9 + 9; // 1000000009
// const unsigned long long mod = (unsigned long long)1e18 + 9;
using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>;
template<class F>
struct y_combinator_result{
F f;
template<class T> explicit y_combinator_result(T &&f): f(forward<T>(f)){ }
template<class ...Args> decltype(auto) operator()(Args &&...args){ return f(ref(*this), forward<Args>(args)...); }
};
template<class F>
decltype(auto) y_combinator(F &&f){
return y_combinator_result<decay_t<F>>(forward<F>(f));
}
template<class T>
struct graph{
using Weight_t = T;
struct Edge_t{
int from, to;
T cost;
};
int n;
vector<Edge_t> edge;
vector<vector<int>> adj;
function<bool(int)> ignore;
graph(int n = 1): n(n), adj(n){
assert(n >= 1);
}
graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
assert(n >= 1);
if(undirected){
for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
}
else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
}
graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
assert(n >= 1);
if(undirected){
for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
}
else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
}
graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
assert(n >= 1);
for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
}
graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
assert(n >= 1);
for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
}
int operator()(int u, int id) const{
#ifdef LOCAL
assert(0 <= id && id < (int)edge.size());
assert(edge[id].from == u || edge[id].to == u);
#endif
return u ^ edge[id].from ^ edge[id].to;
}
int link(int u, int v, T w = {}){ // insert an undirected edge
int id = (int)edge.size();
adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
return id;
}
int orient(int u, int v, T w = {}){ // insert a directed edge
int id = (int)edge.size();
adj[u].push_back(id), edge.push_back({u, v, w});
return id;
}
void clear(){
for(auto [u, v, w]: edge){
adj[u].clear();
adj[v].clear();
}
edge.clear();
ignore = {};
}
graph transposed() const{ // the transpose of the directed graph
graph res(n);
for(auto &e: edge) res.orient(e.to, e.from, e.cost);
res.ignore = ignore;
return res;
}
int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
return (int)adj[u].size();
}
// The adjacency list is sorted for each vertex.
vector<vector<int>> get_adjacency_list() const{
vector<vector<int>> res(n);
for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
if(ignore && ignore(id)) continue;
res[(*this)(u, id)].push_back(u);
}
return res;
}
void set_ignoration_rule(const function<bool(int)> &f){
ignore = f;
}
void reset_ignoration_rule(){
ignore = nullptr;
}
friend ostream &operator<<(ostream &out, const graph &g){
for(auto id = 0; id < (int)g.edge.size(); ++ id){
if(g.ignore && g.ignore(id)) continue;
auto &e = g.edge[id];
out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
}
return out;
}
};
// Requires graph
template<bool ENABLE_LCA_SOLVER, bool ENABLE_LEVEL_ANCESTOR_SOLVER>
struct forest_query_solver_base{
static_assert(ENABLE_LCA_SOLVER || ENABLE_LEVEL_ANCESTOR_SOLVER);
#ifdef LOCAL
#define ASSERT(c) assert(c)
#else
#define ASSERT(c) 42
#endif
#define ifLCA if constexpr(ENABLE_LCA_SOLVER)
#define ifLA if constexpr(ENABLE_LEVEL_ANCESTOR_SOLVER)
int n;
// For LCA Solver
vector<int> label;
vector<int> ascendant;
vector<int> head;
// For LA Solver
static constexpr int kappa = 4;
static constexpr int kappa_prime = (3 * kappa - 1) / (kappa - 2);
vector<array<int, 3>> stack;
vector<int> valley;
vector<int> valley_cnt;
vector<int> right;
vector<int> jump;
vector<vector<int>> ladder;
// Common
vector<int> order;
vector<int> pos;
vector<int> end;
vector<int> root_of;
vector<int> depth;
vector<int> was;
void init(int n){
assert(n >= 1);
this->n = n;
ifLCA{
label.assign(n, -1);
ascendant.assign(n, -1);
head.assign(n + 1, -1);
}
ifLA{
stack.assign(2 * n, {});
valley.assign(2 * n, -1);
valley_cnt.assign(2 * n - 1, -1);
right.assign(n + 1, -1);
jump.assign(2 * n - 1, -1);
ladder.assign(2 * n - 1, {});
}
order.clear();
pos.assign(n, -1);
end.assign(n, -1);
root_of.assign(n, -1);
depth.assign(n, -1);
was.assign(n, -2);
attempt = -1;
}
int attempt;
// O(n)
template<class T>
void build(const graph<T> &g, const vector<int> &src){
assert(g.n <= n);
++ attempt;
order.clear();
int timer = 1;
auto dfs = [&](auto self, int u, int pe)->void{
assert(was[u] != attempt);
was[u] = attempt;
pos[u] = (int)order.size();
order.push_back(u);
ifLCA label[u] = timer ++;
for(auto id: g.adj[u]){
if(id == pe || g.ignore && g.ignore(id)) continue;
int v = g(u, id);
root_of[v] = root_of[u];
depth[v] = depth[u] + 1;
self(self, v, id);
ifLCA if(__builtin_ctz(label[u]) < __builtin_ctz(label[v])) label[u] = label[v];
order.push_back(u);
}
end[u] = (int)order.size();
};
for(auto r: src){
if(was[r] == attempt) continue;
depth[r] = 0;
root_of[r] = r;
dfs(dfs, r, -1);
}
ifLCA for(auto i = 0; i < (int)order.size(); ++ i){
int u = order[i];
if(pos[u] != i) continue;
if(root_of[u] == u) ascendant[u] = label[u];
for(auto id: g.adj[u]){
if(g.ignore && g.ignore(id)) continue;
int v = g(u, id);
if(pos[v] < pos[u] || end[u] < end[v]) continue;
ascendant[v] = ascendant[u];
if(label[v] != label[u]){
head[label[v]] = u;
ascendant[v] += label[v] & -label[v];
}
}
}
ifLA{
int si = 0, ymin = numeric_limits<int>::max(), ymax = numeric_limits<int>::min();
stack[si ++] = {0, numeric_limits<int>::min(), numeric_limits<int>::max()};
for(auto i = 0; i < (int)order.size(); ++ i){
int u = order[i], y = n - 1 - depth[u];
valley_cnt[i] = 0;
ymin = min(ymin, y);
ymax = max(ymax, y);
while(stack[si - 1][1] >= y) -- si;
if(stack[si - 1][2] >= y){
valley[i] = i;
if(stack[si - 1][2] > y) stack[si ++] = {i, y, y};
}
else{
while(stack[si - 2][2] < y) -- si;
valley[i] = stack[si - 1][0];
if(stack[si - 2][2] > y) stack[si - 1][2] = y;
else -- si;
}
}
valley[(int)order.size()] = (int)order.size() - 1;
for(auto i = 0; i < (int)order.size(); ++ i) ++ valley_cnt[valley[i]];
for(auto y = ymin; y <= ymax + 1; ++ y) right[y] = (int)order.size();
for(auto i = (int)order.size() - 1; i >= 0; -- i){
int u = order[i], y = n - 1 - depth[u];
right[y] = i;
int h = ymax - y;
if(0 < i && i < (int)order.size() - 2) h = min(h, max(kappa - 1, kappa_prime * (valley_cnt[i] - 1) - 2));
ladder[i].resize(h);
for(auto yi = 0; yi < h; ++ yi) ladder[i][yi] = right[y + yi + 1];
jump[i] = i ? valley[right[min(ymax + 1, y + (kappa - 2 << __builtin_ctz(i)))]] : 0;
}
}
}
template<class T>
void build_all(const graph<T> &g){
vector<int> src(g.n);
iota(src.begin(), src.end(), 0);
build(g, src);
}
// Check if u is visited during the last build call
bool visited(int u) const{
ASSERT(0 <= u && u < n);
return was[u] == attempt;
}
// O(1)
bool ancestor_of(int u, int v) const{
#ifdef LOCAL
ASSERT(visited(u) && visited(v));
#endif
return pos[u] <= pos[v] && end[v] <= end[u];
}
// Assumes u and v are on the same component
// O(1)
int lca(int u, int v) const{
static_assert(ENABLE_LCA_SOLVER);
ASSERT(visited(u) && visited(v) && root_of[u] == root_of[v]);
auto [x, y] = minmax(label[u], label[v]);
int k = ascendant[u] & ascendant[v] & -(1 << __lg(x - 1 ^ y));
if(ascendant[u] != k){
int t = 1 << __lg(ascendant[u] ^ k);
u = head[label[u] & -t | t];
}
if(ascendant[v] != k){
int t = 1 << __lg(ascendant[v] ^ k);
v = head[label[v] & -t | t];
}
return depth[u] < depth[v] ? u : v;
}
// Assumes u and v are on the same component
// O(1)
int steps(int u, int v, int w = -1) const{
static_assert(ENABLE_LCA_SOLVER);
ASSERT(visited(u) && visited(v) && root_of[u] == root_of[v]);
return -2 * depth[~w ? w : lca(u, v)] + depth[u] + depth[v];
}
// Check if w lies in u-v path
// O(1)
bool on_path(int u, int v, int w) const{
static_assert(ENABLE_LCA_SOLVER);
ASSERT(visited(u) && visited(v) && visited(w) && root_of[u] == root_of[v] && root_of[v] == root_of[w]);
return steps(u, v) == steps(u, w) + steps(w, v);
}
// Check if u-v path and w-x path intersect, and find their interseciton if they intersect
// O(1)
optional<pair<int, int>> intersect_path(int u, int v, int w, int x) const{
static_assert(ENABLE_LCA_SOLVER);
ASSERT(visited(u) && visited(v) && visited(w) && visited(x) && root_of[u] == root_of[v] && root_of[v] == root_of[w] && root_of[w] == root_of[x]);
int optl = -1, optr = -1;
for(auto y: {lca(u, w), lca(u, x), lca(v, w), lca(v, x)}){
if(!on_path(u, v, y) || !on_path(w, x, y)) continue;
if(!~optl) optl = optr = y;
else if(depth[optl] < depth[y]) optr = optl, optl = y;
else if(depth[optr] < depth[y]) optr = y;
}
if(!~optl) return {};
return pair{optl, optr};
}
// Get the k-th ancestor of u
// O(1)
int find_ancestor_by_order(int u, int k) const{
static_assert(ENABLE_LEVEL_ANCESTOR_SOLVER);
ASSERT(visited(u) && 0 <= k && k <= depth[u]);
if(k == 0) return u;
if(k < kappa) return order[ladder[pos[u]][k - 1]];
int p = __lg(k / kappa), x = pos[u] >> p << p;
if(x > 0 && (x & (1 << p + 1) - 1) == 0) x -= 1 << p;
return order[ladder[jump[x]][k + depth[order[jump[x]]] - depth[u] - 1]];
}
// Get the k-th vertex in the u-v path
// Assumes u and v are on the same component
// O(1)
int find_vertex_by_order(int u, int v, int k) const{
static_assert(ENABLE_LCA_SOLVER && ENABLE_LEVEL_ANCESTOR_SOLVER);
ASSERT(visited(u) && visited(v) && root_of[u] == root_of[v] && 0 <= k);
if(k == 0) return u;
int w = lca(u, v);
if(k <= depth[u] - depth[w]) return find_ancestor_by_order(u, k);
else return find_ancestor_by_order(v, depth[u] + depth[v] - 2 * depth[w] - k);
}
// For an ancestor p of u, pred(p) is T, ..., T, F, ..., F in decreasing order of depth
// Returns the furthest p with T
// O(log(n))
int find_furthest_ancestor(int u, auto pred) const{
static_assert(ENABLE_LEVEL_ANCESTOR_SOLVER);
ASSERT(visited(u) && pred(u));
if(root_of[u] == u) return u;
for(auto bit = __lg(depth[u]); bit >= 0; -- bit) if(1 << bit <= depth[u]){
int v = find_ancestor_by_order(u, 1 << bit);
if(pred(v)) u = v;
}
return u;
}
// For a vertex w in u-v path, pred(w) is T, ..., T, F, ..., F in order from u to v
// Returns the furthest w with T
// O(log(n))
int find_furthest_vertex(int u, int v, auto pred) const{
static_assert(ENABLE_LCA_SOLVER && ENABLE_LEVEL_ANCESTOR_SOLVER);
ASSERT(visited(u) && visited(v) && root_of[u] == root_of[v] && pred(u));
if(pred(v)) return v;
int w = lca(u, v);
if(!pred(w)){
for(auto bit = __lg(depth[u] - depth[w]); bit >= 0; -- bit) if(1 << bit <= depth[u] - depth[w]){
int v = find_ancestor_by_order(u, 1 << bit);
if(pred(v)) u = v;
}
return u;
}
else{
for(auto bit = __lg(depth[v] - depth[w]); bit >= 0; -- bit) if(1 << bit <= depth[v] - depth[w]){
int u = find_ancestor_by_order(v, 1 << bit);
if(!pred(u)) v = u;
}
return order[pos[v] - 1];
}
}
#undef ASSERT
#undef ifLCA
#undef ifLA
};
// Source: https://github.com/programming-team-code/programming_team_code/blob/main/graphs/linear_lca/linear_lca.hpp
auto make_lca_solver(){
return forest_query_solver_base<true, false>();
}
// Source: Still Simpler Static Level Ancestors
auto make_la_solver(){
return forest_query_solver_base<false, true>();
}
auto make_forest_query_solver(){
return forest_query_solver_base<true, true>();
}
struct succinct_dictionary{
static constexpr unsigned int wsize = 64;
static unsigned int rank64(unsigned long long x, unsigned int i){
return __builtin_popcountll(x & ((1ULL << i) - 1));
}
#pragma pack(4)
struct block_t{
unsigned long long bit;
unsigned int sum;
};
#pragma pack()
unsigned int n, zeros;
vector<block_t> block;
succinct_dictionary(unsigned int n = 0) : n(n), block(n / wsize + 1){}
// O(1)
int operator[](unsigned int i) const{
return block[i / wsize].bit >> i % wsize & 1;
}
// O(1)
void set(unsigned int i){
block[i / wsize].bit |= 1ULL << i % wsize;
}
// O(n/w)
void build(){
for(auto i = 0; i < n / wsize; ++ i) block[i + 1].sum = block[i].sum + __builtin_popcountll(block[i].bit);
zeros = rank0(n);
}
// O(1)
unsigned int rank0(unsigned int i) const{
return i - rank1(i);
}
// O(1)
unsigned int rank1(unsigned int i) const{
auto &&e = block[i / wsize];
return e.sum + rank64(e.bit, i % wsize);
}
// O(log(n))
unsigned int select0(unsigned int k) const{
unsigned int low = 0, high = n;
while(high - low >= 2){
unsigned int mid = low + high >> 1;
(rank0(mid) <= k ? low : high) = mid;
}
return low;
}
// O(log(n))
unsigned int select1(unsigned int k) const{
unsigned int low = 0, high = n;
while(high - low >= 2){
unsigned int mid = low + high >> 1;
(rank1(mid) <= k ? low : high) = mid;
}
return low;
}
};
// nor orz
// Requires succinct_dictionary
template<bool HAS_QUERY, class B, class T, class F, class I>
struct wavelet_matrix_base{
int n, lg;
B sigma;
vector<succinct_dictionary> data;
vector<vector<T>> aggregate;
F TT; // commutative group operation
T T_id; // commutative group identity
I Tinv; // commutative group inverse
wavelet_matrix_base(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
wavelet_matrix_base &operator=(const wavelet_matrix_base &wm){
n = wm.n;
lg = wm.lg;
sigma = wm.sigma;
data = wm.data;
return *this;
}
// O(n * log(sigma)) time and O(n * log(sigma) / w) memory
void build(const vector<B> &key, B sigma){
static_assert(!HAS_QUERY);
assert(sigma > 0);
for(auto x: key) assert(0 <= x && x < sigma);
n = (int)key.size();
this->sigma = sigma;
lg = __lg(sigma) + (B(1) << lg != sigma) + 1;
data.assign(lg, succinct_dictionary(n));
vector<B> cur = key, next(n);
for(auto h = lg; h --;){
for(auto i = 0; i < n; ++ i) if(cur[i] >> h & 1) data[h].set(i);
data[h].build();
array it{next.begin(), next.begin() + data[h].zeros};
for(auto i = 0; i < n; ++ i) *it[data[h][i]] ++ = cur[i];
swap(cur, next);
}
}
// O(n * log(sigma)) time and O(n * log(sigma)) memory
template<class U>
void build(const vector<B> &key, B sigma, const vector<U> &value){
static_assert(HAS_QUERY);
assert(sigma > 0);
for(auto x: key) assert(0 <= x && x < sigma);
n = (int)key.size();
this->sigma = sigma;
lg = __lg(sigma) + (B(1) << lg != sigma) + 1;
data.assign(lg, succinct_dictionary(n));
aggregate.assign(lg + 1, vector<T>(n + 1, T_id));
vector<pair<B, T>> cur(n), next(n);
for(auto i = 0; i < n; ++ i) cur[i] = {key[i], value[i]};
for(auto h = lg; h --;){
for(auto i = 0; i < n; ++ i) if(cur[i].first >> h & 1) data[h].set(i);
data[h].build();
array it{next.begin(), next.begin() + data[h].zeros};
for(auto i = 0; i < n; ++ i){
*it[data[h][i]] ++ = cur[i];
aggregate[h + 1][i + 1] = data[h][i] ? aggregate[h + 1][i] : TT(aggregate[h + 1][i], cur[i].second);
}
swap(cur, next);
}
for(auto i = 0; i < n; ++ i) aggregate[0][i + 1] = TT(aggregate[0][i], cur[i].second);
}
// Returns the frequency of x in the interval [ql, qr)
// O(log(sigma))
int freq(int ql, int qr, int x) const{
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= x);
if(ql == qr || sigma <= x) return 0;
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(~x >> h & 1) ql = lcnt, qr = rcnt;
else ql += data[h].zeros - lcnt, qr += data[h].zeros - rcnt;
}
return qr - ql;
}
// Returns the frequency of x in the interval [ql, qr), along with the sum of their values
// O(log(sigma))
pair<int, T> freq_query(int ql, int qr, int x) const{
static_assert(HAS_QUERY);
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= x);
if(ql == qr || sigma <= x) return {0, T_id};
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(~x >> h & 1) ql = lcnt, qr = rcnt;
else ql += data[h].zeros - lcnt, qr += data[h].zeros - rcnt;
}
return {qr - ql, TT(aggregate[0][qr], Tinv(aggregate[0][ql]))};
}
// Returns the number of occurrences of numbers in [0, xr) in the interval [ql, qr)
// O(log(sigma))
int count(int ql, int qr, B xr) const{
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= xr);
if(sigma <= xr) return qr - ql;
if(xr == 0) return 0;
int cnt = 0;
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(~xr >> h & 1) ql = lcnt, qr = rcnt;
else{
cnt += rcnt - lcnt;
ql += data[h].zeros - lcnt, qr += data[h].zeros - rcnt;
}
}
return cnt;
}
// Returns the number of occurrences of numbers in [0, xr) in the interval [ql, qr), along with the sum of their values
// O(log(sigma))
pair<int, T> count_query(int ql, int qr, B xr) const{
static_assert(HAS_QUERY);
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= xr);
if(xr == 0) return {0, T_id};
xr = min(sigma, xr);
int cnt = 0;
T sum = T_id;
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(~xr >> h & 1) ql = lcnt, qr = rcnt;
else{
cnt += rcnt - lcnt;
sum = TT(sum, TT(aggregate[h + 1][qr], Tinv(aggregate[h + 1][ql])));
ql += data[h].zeros - lcnt, qr += data[h].zeros - rcnt;
}
}
return {cnt, sum};
}
// Returns the number of occurrences of numbers in [xl, xr) in the interval [ql, qr)
// O(log(sigma))
int count(int ql, int qr, B xl, B xr) const{
assert(xl <= xr);
if(xl == xr) return 0;
return count(ql, qr, xr) - count(ql, qr, xl);
}
// Returns the number of occurrences of numbers in [xl, xr) in the interval [ql, qr), along with the sum of their values
// O(log(sigma))
pair<int, T> count_query(int ql, int qr, B xl, B xr) const{
static_assert(HAS_QUERY);
assert(xl <= xr);
if(xl == xr) return {0, T_id};
auto [lcnt, lsum] = count_query(ql, qr, xl);
auto [rcnt, rsum] = count_query(ql, qr, xr);
return {rcnt - lcnt, TT(rsum, Tinv(lsum))};
}
// Find the k-th smallest element in the interval [ql, qr), sigma if no such element
// O(log(sigma))
B find_by_order(int ql, int qr, int k) const{
assert(0 <= k);
if(k >= qr - ql) return sigma;
B x = 0;
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(k < rcnt - lcnt) ql = lcnt, qr = rcnt;
else {
k -= rcnt - lcnt;
x |= (B)1 << h;
ql += data[h].zeros - lcnt;
qr += data[h].zeros - rcnt;
}
}
return x;
}
// Find the k-th smallest element in the interval [ql, qr), sigma if no such element, along with the sum of values of the k smallest elements (prioritizing smaller index)
// O(log(sigma))
pair<B, T> find_by_order_query(int ql, int qr, int k) const{
assert(0 <= k);
k = min(k, qr - ql);
B x = 0;
T sum = T_id;
for(auto h = lg; h --; ){
auto lcnt = data[h].rank0(ql), rcnt = data[h].rank0(qr);
if(k < rcnt - lcnt) ql = lcnt, qr = rcnt;
else {
k -= rcnt - lcnt;
x |= (B)1 << h;
sum = TT(sum, TT(aggregate[h + 1][qr], Tinv(aggregate[h + 1][ql])));
ql += data[h].zeros - lcnt;
qr += data[h].zeros - rcnt;
}
}
return {x, TT(sum, TT(aggregate[0][ql + k], Tinv(aggregate[0][ql])))};
}
// Find the k-th smallest element in the interval [ql, qr) among elements >= xl, sigma if no such element
// O(log(sigma))
B find_by_order(int ql, int qr, B xl, int k) const{
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= xl && 0 <= k);
if(xl >= sigma) return sigma;
k += count(ql, qr, 0, xl);
if(k >= qr - ql) return sigma;
return find_by_order(ql, qr, k);
}
// Find the k-th smallest element in the interval [ql, qr) among elements >= xl, sigma if no such element, along with the sum of values of the k smallest elements (prioritizing smaller index)
// O(log(sigma))
pair<B, T> find_by_order_query(int ql, int qr, B xl, int k) const{
assert(0 <= ql && ql <= qr && qr <= n);
assert(0 <= xl && 0 <= k);
if(xl >= sigma) return {sigma, T_id};
auto [cnt, sum] = count_query(ql, qr, 0, xl);
k += cnt;
auto [x, sum2] = find_by_order_query(ql, qr, k);
return {x, TT(sum2, Tinv(sum))};
}
// Find the smallest element >= x, sigma if no such element
// O(log(sigma))
B lower_bound(int ql, int qr, B x) const{
assert(0 <= x);
return find_by_order(ql, qr, x, 0);
}
// Find the smallest element > x, sigma if no such element
// O(log(sigma))
B upper_bound(int ql, int qr, B x) const{
assert(0 <= x);
return find_by_order(ql, qr, x + 1, 0);
}
// Find the largest element <= x, -1 if no such element
// O(log(sigma))
B reverse_lower_bound(int ql, int qr, B x) const{
assert(0 <= x);
int cnt = count(ql, qr, x);
return cnt ? find_by_order(ql, qr, cnt - 1) : -1;
}
// Find the largest element < x, -1 if no such element
// O(log(sigma))
B reverse_upper_bound(int ql, int qr, B x) const{
assert(0 <= x);
int cnt = count(ql, qr, x + 1);
return cnt ? find_by_order(ql, qr, cnt - 1) : -1;
}
};
template<class B>
auto make_wavelet_matrix(){
return wavelet_matrix_base<false, B, int, plus<>, negate<>>(plus<>(), 0, negate<>());
}
// Supports query
template<class B, class T = long long, class F = plus<>, class I = negate<>>
auto make_Q_wavelet_matrix(F TT = plus<>(), T T_id = 0, I Tinv = negate<>()){
return wavelet_matrix_base<true, B, T, F, I>(TT, T_id, Tinv);
}
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
int n, qn;
cin >> n >> qn;
vector<array<int, 2>> inter{{0, n}};
vector<array<int, 2>> child{{-1, -1}};
vector<int> leaf;
y_combinator([&](auto self, int u, int l, int r)->void{
if(r - l == 1){
assert((int)leaf.size() == l);
leaf.push_back(u);
return;
}
int m;
cin >> m;
int v = (int)inter.size();
inter.push_back({l, m});
child.push_back({-1, -1});
child[u][0] = v;
self(v, l, m);
int w = (int)inter.size();
inter.push_back({m, r});
child.push_back({-1, -1});
child[u][1] = w;
self(w, m, r);
})(0, 0, n);
assert((int)leaf.size() == n);
int m = (int)inter.size();
graph<int> g(m);
for(auto u = 0; u < m; ++ u){
for(auto i = 0; i < 2; ++ i){
if(~child[u][i]){
g.orient(u, child[u][i]);
}
}
}
auto las = make_la_solver();
las.init(m);
las.build(g, {0});
vector<array<int, 2>> q(qn);
for(auto &[ql, qr]: q){
cin >> ql >> qr;
}
ranges::sort(q);
auto wm = make_wavelet_matrix<int>();
{
vector<int> r(qn);
for(auto qi = 0; qi < qn; ++ qi){
r[qi] = q[qi][1];
}
wm.build(r, n + 1);
}
vector<int> marked(m);
for(auto x = 0; x < n; ++ x){
int cnt;
{
int p = ranges::lower_bound(q, array{x + 1, 0}) - q.begin();
cnt = p - wm.count(0, p, x + 1);
}
if(!cnt){
continue;
}
int u = las.find_furthest_ancestor(leaf[x], [&](int u){
int p = ranges::lower_bound(q, array{inter[u][0] + 1, 0}) - q.begin();
return cnt == p - wm.count(0, p, inter[u][1]);
});
marked[u] = true;
}
vector<array<modular, 3>> dp(m);
/*
type 0: L->R is separated, and is not required to be connected later
type 1: L->R is separated, but is required to be connected later
type 2: L->R is connected, possibly indirectly
*/
for(auto u = m - 1; u >= 0; -- u){
if(inter[u][1] - inter[u][0] == 1){
if(marked[u]){
dp[u][1] = dp[u][2] = 1;
}
else{
dp[u][0] = dp[u][2] = 1;
}
continue;
}
auto [v, w] = child[u];
if(marked[u]){
dp[u][1] += dp[v][0] * dp[w][0];
dp[u][2] += dp[v][0] * dp[w][0];
dp[u][1] += dp[v][0] * dp[w][2];
dp[u][2] += dp[v][0] * dp[w][2];
dp[u][1] += dp[v][1] * dp[w][2];
dp[u][2] += dp[v][1] * dp[w][2];
dp[u][1] += dp[v][2] * dp[w][0];
dp[u][2] += dp[v][2] * dp[w][0];
dp[u][1] += dp[v][2] * dp[w][1];
dp[u][2] += dp[v][2] * dp[w][1];
dp[u][2] += 2 * dp[v][2] * dp[w][2];
}
else{
dp[u][0] += dp[v][0] * dp[w][0];
dp[u][2] += dp[v][0] * dp[w][0];
dp[u][0] += dp[v][0] * dp[w][2];
dp[u][2] += dp[v][0] * dp[w][2];
dp[u][1] += dp[v][1] * dp[w][2];
dp[u][2] += dp[v][1] * dp[w][2];
dp[u][0] += dp[v][2] * dp[w][0];
dp[u][2] += dp[v][2] * dp[w][0];
dp[u][1] += dp[v][2] * dp[w][1];
dp[u][2] += dp[v][2] * dp[w][1];
dp[u][2] += 2 * dp[v][2] * dp[w][2];
}
}
cout << dp[0][0] + dp[0][2] << "\n";
return 0;
}
/*
*/
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3668kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
2 1 1 1 2
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
5 2 2 1 4 3 1 3 2 5
output:
193
result:
ok 1 number(s): "193"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
10 10 5 2 1 3 4 7 6 8 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
70848
result:
ok 1 number(s): "70848"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
2 2 1 0 1 0 2
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3660kb
input:
3 3 1 2 0 1 0 2 0 3
output:
14
result:
ok 1 number(s): "14"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3608kb
input:
4 4 1 2 3 0 1 0 2 0 3 0 4
output:
48
result:
ok 1 number(s): "48"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3828kb
input:
5 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5
output:
164
result:
ok 1 number(s): "164"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
6 6 4 2 1 3 5 0 1 0 2 0 3 0 4 0 5 0 6
output:
544
result:
ok 1 number(s): "544"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3572kb
input:
7 7 3 2 1 5 4 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7
output:
1856
result:
ok 1 number(s): "1856"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
8 8 3 1 2 4 7 5 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
output:
6528
result:
ok 1 number(s): "6528"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
9 9 3 1 2 4 7 6 5 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
output:
21520
result:
ok 1 number(s): "21520"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
10 10 8 2 1 3 4 6 5 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10
output:
71296
result:
ok 1 number(s): "71296"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
2 3 1 0 1 0 2 1 2
output:
4
result:
ok 1 number(s): "4"
Test #15:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
3 6 1 2 0 1 0 2 0 3 1 2 1 3 2 3
output:
14
result:
ok 1 number(s): "14"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
4 10 1 2 3 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4 3 4
output:
48
result:
ok 1 number(s): "48"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
5 15 1 4 3 2 0 1 0 2 0 3 0 4 0 5 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5
output:
164
result:
ok 1 number(s): "164"
Test #18:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
6 21 5 3 1 2 4 0 1 0 2 0 3 0 4 0 5 0 6 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6
output:
544
result:
ok 1 number(s): "544"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
7 28 4 1 2 3 6 5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 1 2 1 3 1 4 1 5 1 6 1 7 2 3 2 4 2 5 2 6 2 7 3 4 3 5 3 6 3 7 4 5 4 6 4 7 5 6 5 7 6 7
output:
1912
result:
ok 1 number(s): "1912"
Test #20:
score: 0
Accepted
time: 0ms
memory: 3832kb
input:
8 36 5 2 1 3 4 7 6 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 1 2 1 3 1 4 1 5 1 6 1 7 1 8 2 3 2 4 2 5 2 6 2 7 2 8 3 4 3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8 5 6 5 7 5 8 6 7 6 8 7 8
output:
6304
result:
ok 1 number(s): "6304"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
9 45 6 2 1 4 3 5 7 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 4 3 5 3 6 3 7 3 8 3 9 4 5 4 6 4 7 4 8 4 9 5 6 5 7 5 8 5 9 6 7 6 8 6 9 7 8 7 9 8 9
output:
20736
result:
ok 1 number(s): "20736"
Test #22:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
10 55 6 3 2 1 4 5 8 7 9 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 5 4 6 4 7 4 8 4 9 4 10 5 6 5 7 5 8 5 9 5 10 6 7 6 8 6 9 6 10 7 8 7 9 7 10 8 9 8 10 9 10
output:
70784
result:
ok 1 number(s): "70784"
Test #23:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
2 1 1 0 2
output:
5
result:
ok 1 number(s): "5"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3920kb
input:
3 1 2 1 2 3
output:
21
result:
ok 1 number(s): "21"
Test #25:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
4 1 2 1 3 0 1
output:
85
result:
ok 1 number(s): "85"
Test #26:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
5 1 4 1 3 2 0 5
output:
341
result:
ok 1 number(s): "341"
Test #27:
score: -100
Wrong Answer
time: 0ms
memory: 3616kb
input:
6 1 5 1 2 3 4 0 2
output:
1155
result:
wrong answer 1st numbers differ - expected: '1260', found: '1155'