QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#331125 | #7693. Convex Hull Extension | lmf_up | AC ✓ | 3ms | 3992kb | C++20 | 32.2kb | 2024-02-18 01:32:43 | 2024-02-18 01:32:43 |
Judging History
answer
#include<bits/stdc++.h>
#define cp const point &
#define cl const line &
#define cc const circle &
#define LD long double
std::mt19937 rnd(time(0));
const LD eps = 1e-8;
const LD pi = std::numbers::pi;
const LD INF = 1e9;
int sgn(LD x)
{
return x > eps ? 1 : (x < -eps ? -1 : 0);
}
LD sqr(LD x)
{ return x * x; }
struct point
{
LD x, y;
point operator+(cp a) const
{ return {x + a.x, y + a.y}; }
point operator-(cp a) const
{ return {x - a.x, y - a.y}; }
point operator*(LD t) const
{ return {x * t, y * t}; }
point operator/(LD t) const
{ return {x / t, y / t}; }
point rot(LD t) const
{ return {(LD) (x * cos(t) - y * sin(t)), (LD) (x * sin(t) + y * cos(t))}; }
point rot90() const
{ return {-y, x}; }
LD len2() const
{ return x * x + y * y; }
LD len() const
{ return sqrtl(x * x + y * y); }
point unit() const
{
LD d = len();
return {(LD) (x / d), (LD) (y / d)};
}
int on_up()//b不判(0,0)
{
return sgn(y) == 1 || (sgn(y) == 0 && sgn(x) < 0);
}
void print()
{
std::cout << x << ' ' << y << std::endl;
}
void read()
{
int xx, yy;
std::cin >> xx >> yy;
x = xx, y = yy;
}
friend bool operator<(cp a, cp b)
{
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
friend bool operator>(cp a, cp b)
{
return a.x == b.x ? a.y > b.y : a.x > b.x;
}
};
LD dot(cp a, cp b);
bool operator==(cp a, cp b)
{
return !sgn(dot(a - b, a - b));
// return !sgn(a.x-b.x)&&!(a.y-b.y);看题目
}
LD dis(cp a, cp b)//两点距离
{
return sqrtl(sqr(a.x - b.x) + sqr(a.y - b.y));
}
LD dot(cp a, cp b)//点乘
{
return a.x * b.x + a.y * b.y;
}
LD det(cp a, cp b)//叉乘
{
return a.x * b.y - b.x * a.y;
}
bool turn_left(cp a, cp b, cp c)//判断ba是否逆时针转少于180°到ca
{
return sgn(det(b - a, c - a)) > 0;//大于是严格凸包
}
struct line
{
point s, t;
line()
{}
line(point a, point b) : s(a), t(b)
{}
void read()
{
s.read(), t.read();
}
void print()
{
s.print(), std::cout << ' ', t.print();
}
};
struct circle
{
point c;
LD r;
circle()
{}
circle(point C, LD R)
{ c = C, r = R; }
};
bool in_circle(cp a, cc b)
{
return sgn((b.c - a).len() - b.r) <= 0;
}
circle make_circle(point u, point v)
{
point p = (u + v) / 2;
return circle(p, (u - p).len());
}
circle make_circle(cp a, cp b, cp c)
{
point p = b - a, q = c - a;
point s(dot(p, p) / 2, dot(q, q) / 2);
LD d = det(p, q);
p = point(det(s, point(p.y, q.y)), det(point(p.x, q.x), s)) / d;
return circle(a + p, p.len());
}
circle min_circle(std::vector<point> p)
{
circle ret(p[0], 0);
std::shuffle(p.begin(), p.end(), rnd);
int len = p.size();
for (int i = 0; i < len; i++)
if (!in_circle(p[i], ret))
{
ret = circle(p[i], 0);
for (int j = 0; j < i; j++)
if (!in_circle(p[j], ret))
{
ret = make_circle(p[j], p[i]);
for (int k = 0; k < j; ++k)
if (!in_circle(p[k], ret))
ret = make_circle(p[i], p[j], p[k]);
}
}
return ret;
}
LD get_rad(point a, point b)
{
if (a == point(0, 0) || b == point(0, 0))
return 0;
else
{
return acosl(dot(a, b) / (a.len() * b.len()));
}
}
bool same_dir(cl a, cl b)//判断方向是否一致
{
return sgn(det(b.t - b.s, a.t - a.s)) == 0 && sgn(dot(b.t - b.s, a.t - a.s)) > 0;
}
bool point_on_line(cp a, cl l)//判断点是否在直线上
{
return sgn(det(a - l.s, l.t - l.s)) == 0;
}
bool point_on_segment(cp a, cl l)//判断点是否在线段上
{
return point_on_line(a, l) && sgn(dot(l.s - a, l.t - a)) <= 0;//(<=代表可以端点
}
bool two_side(cp a, cp b, cl c)//判断两个点是否在线段的两边
{
return sgn(det(a - c.s, c.t - c.s)) * sgn(det(b - c.s, c.t - c.s)) < 0;
}
bool intersect_judge_strict(cl a, cl b)
{
return two_side(a.s, a.t, b) && two_side(b.s, b.t, a);
}
bool intersect_judge(cl a, cl b)
{//判断两个线段是否相交
if (point_on_segment(a.s, b) || point_on_segment(a.t, b) || point_on_segment(b.s, a) ||
point_on_segment(b.t, a))
return true;
return intersect_judge_strict(a, b);
}
point line_intersect(cl a, cl b)
{//得到两线段的交点
LD s1 = det(a.t - a.s, b.s - a.s);
LD s2 = det(a.t - a.s, b.t - a.s);
return (b.s * s2 - b.t * s1) / (s2 - s1);
}
bool point_on_ray(cp a, cl b)
{//判断点是否在射线上
return sgn(det(a - b.s, b.t - b.s)) == 0 && sgn(dot(a - b.s, b.t - b.s)) >= 0;
}
bool ray_intersect_judge(line a, line b)//判断两射线是否相交
{
LD s1, s2;
s1 = det(a.t - a.s, b.s - a.s);
s2 = det(a.t - a.s, b.t - a.s);
if (sgn(s1) == 0 && sgn(s2) == 0)
return sgn(dot(a.t - a.s, b.s - a.s)) >= 0 || sgn(dot(b.t - b.s, a.s - b.s));
if (!sgn(s1 - s2) || sgn(s1) == sgn(s2 - s1))return 0;
std::swap(a, b);
s1 = det(a.t - a.s, b.s - a.s);
s2 = det(a.t - a.s, b.t - a.s);
return sgn(s1) != sgn(s2 - s1);
}
LD point_to_line(cp a, cl b)
{//点到直线的距离
return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
}
point project_to_line(cp a, cl b)
{//得到点在线上的投影
return b.s + (b.t - b.s) * (dot(a - b.s, b.t - b.s) / (b.t - b.s).len2());
}
LD point_to_segment(cp a, cl b)
{//点到线段的距离
if (b.s == b.t)
return dis(a, b.s);
if (sgn(dot(b.s - a, b.t - b.s)) * sgn(dot(b.t - a, b.t - b.s)) <= 0)
return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
return std::min(dis(a, b.s), dis(a, b.t));
}
std::vector<point> line_circle_intersect(cl a, cc b)//线与圆的交点
{//返回线与圆的交点
if (sgn(point_to_segment(b.c, a) - b.r) > 0)
return std::vector<point>();
LD x = sqrtl(sqr(b.r) - sqr(point_to_line(b.c, a)));
return std::vector<point>(
{project_to_line(b.c, a) + (a.s - a.t).unit() * x, project_to_line(b.c, a) - (a.s - a.t).unit() * x});
}
LD circle_intersect_area(cc a, cc b)//求两个圆相交区域的面积
{
LD d = dis(a.c, b.c);
if (sgn(d - (a.r + b.r)) >= 0)return 0;
if (sgn(d - abs(a.r - b.r)) <= 0)
{
LD r = std::min(a.r, b.r);
return r * r * pi;
}
LD x = (d * d + a.r * a.r - b.r * b.r) / (2 * d),
t1 = acosl(std::min((LD) 1, std::max((LD) -1, x / a.r))),
t2 = acosl(std::min((LD) 1, std::max((LD) -1, (d - x) / b.r)));
return sqr(a.r) * t1 + sqr(b.r) * t2 - d * a.r * sinl(t1);
}
std::vector<point> circle_intersect(cc a, cc b)//求两个圆的交
{
if (a.c == b.c || sgn(dis(a.c, b.c) - a.r - b.r) > 0 || sgn(dis(a.c, b.c) - abs(a.r - b.r)) < 0)
return {};
point r = (b.c - a.c).unit();
LD d = dis(a.c, b.c);
LD x = ((sqr(a.r) - sqr(b.r)) / d + d) / 2;
LD h = sqrtl(sqr(a.r) - sqr(x));
if (sgn(h) == 0)return {a.c + r * x};
return {a.c + r * x + r.rot90() * h, a.c + r * x - r.rot90() * h};
}
std::vector<point> tangent(cp a, cc b)//求一个点关于圆的切线
{
circle p = make_circle(a, b.c);
return circle_intersect(p, b);
}
std::vector<line> extangent(cc a, cc b)//求两圆的外切线
{
std::vector<line> ret;
if (sgn(dis(a.c, b.c) - abs(a.r - b.r)) <= 0)return ret;
if (sgn(a.r - b.r) == 0)
{
point dir = b.c - a.c;
dir = (dir * a.r / dir.len()).rot90();
ret.push_back(line(a.c + dir, b.c + dir));
ret.push_back(line(a.c - dir, b.c - dir));
}
else
{
point p = (b.c * a.r - a.c * b.r) / (a.r - b.r);
std::vector pp = tangent(p, a), qq = tangent(p, b);
if (pp.size() == 2 && qq.size() == 2)
{
if (sgn(a.r - b.r) < 0)
std::swap(pp[0], pp[1]), std::swap(qq[0], qq[1]);
ret.push_back(line(pp[0], qq[0]));
ret.push_back(line(pp[1], qq[1]));
}
}
return ret;
}
std::vector<line> intangent(cc a, cc b)//求两圆的内切线
{
std::vector<line> ret;
point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
std::vector pp = tangent(p, a), qq = tangent(p, b);
if (pp.size() == 2 && qq.size() == 2)
{
ret.push_back(line(pp[0], qq[0]));
ret.push_back(line(pp[1], qq[1]));
}
return ret;
}
std::vector<point> cut(const std::vector<point> &c, line p)
{
std::vector<point> ret;
if (c.empty())return ret;
int len = c.size();
for (int i = 0; i < len; i++)
{
int j = (i + 1) % len;
if (turn_left(p.s, p.t, c[i]))ret.push_back(c[i]);
if (two_side(c[i], c[j], p))
ret.push_back(line_intersect(p, line(c[i], c[j])));
}
return ret;
}
std::vector<point> convex_hull(std::vector<point> a)
{//凸包,字典序
int n = (int) a.size(), cnt = 0;
if (n < 2) return a;
std::sort(a.begin(), a.end()); // less<pair>
std::vector<point> ret;
for (int i = 0; i < n; ++i)
{
while (cnt > 1
&& !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
--cnt, ret.pop_back();
++cnt, ret.push_back(a[i]);
}
int fixed = cnt;
for (int i = n - 2; i >= 0; --i)
{
while (cnt > fixed
&& !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
--cnt, ret.pop_back();
++cnt, ret.push_back(a[i]);
}
ret.pop_back();
return ret;
}
std::vector<point> minkovski(std::vector<std::vector<point>> a)
{
if (a[0].size() == 1)
return a[1];
if (a[1].size() == 1)
return a[0];
for (int i = 0; i < 2; i++)a[i].push_back(a[i].front());
int i[2] = {0, 0}, len[2] = {(int) a[0].size() - 1, (int) a[1].size() - 1};
std::vector<point> ret;
ret.push_back(a[0][0] + a[1][0]);
do
{
int d = sgn(det(a[1][i[1] + 1] - a[1][i[1]], a[0][i[0] + 1] - a[0][i[0]])) >= 0;
ret.push_back(a[d][i[d] + 1] - a[d][i[d]] + ret.back());
i[d] = (i[d] + 1) % len[d];
}
while (i[0] || i[1]);
return ret;
}
struct Convex
{
int n;
std::vector<point> a, upper, lower;
std::map<point, int> mp;
Convex(std::vector<point> _a) : a(_a)
{
n = a.size();
int k = 0;
for (int i = 1; i < n; i++)if (a[k] < a[i])k = i;
for (int i = 0; i <= k; i++) lower.push_back(a[i]);
for (int i = k; i < n; i++) upper.push_back(a[i]);
upper.push_back(a[0]);
}
void pre_to_check_point()
{
for (int i = 0; i < n; i++)
mp[a[i]] = i;
}
std::pair<LD, int> get_tan(std::vector<point> &con, point vec)
{
int l = 0, r = (int) con.size() - 2;
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
if (sgn(det(con[mid + 1] - con[mid], vec)) > 0)r = mid;
else l = mid;
}
return std::max(std::make_pair(det(vec, con[r]), r), std::make_pair(det(vec, con[0]), 0));
}
void upd_tan(cp p, int id, int &i0, int &i1)//辅助函数
{
// if (i0 == -1) i0 = id;
if ((det(a[i0] - p, a[id] - p)) > 0) i0 = id;
// if (i1 == -1) i1 = id;
if ((det(a[i1] - p, a[id] - p)) < 0) i1 = id;
}
void search(int l, int r, point p, int &i0, int &i1)//辅助函数
{
if (l == r)return;
upd_tan(p, l % n, i0, i1);
int sl = sgn(det(a[l % n] - p, a[(l + 1) % n] - p));
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
int smid = sgn(det(a[mid % n] - p, a[(mid + 1) % n] - p));
if (smid == sl)l = mid;
else r = mid;
}
upd_tan(p, r % n, i0, i1);
}
int search(point u, point v, int l, int r)//辅助函数
{
int sl = sgn(det(v - u, a[l % n] - u));
for (; l + 1 < r;)
{
int mid = (l + r) / 2;
int smid = sgn(det(v - u, a[mid % n] - u));
if (smid == sl) l = mid;
else r = mid;
}
return l % n;
}
//判定点是否在凸包内,在边界返回true
bool contain(point p)
{
if (p.x < lower[0].x || p.x > lower.back().x)return false;
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)return false;
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
return false;
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)return false;
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
return false;
return true;
}
int contain_strict(point p)//0代表在外面 1代表在里面 2代表在边上 3代表在点上
{
if (p.x < lower[0].x || p.x > lower.back().x)return 0;
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)return 0;
else if (sgn(lower[id].y - p.y) == 0) return 3;
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y < lower[id + 1].y)
return 2;
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y == lower[id + 1].y)
return 3;
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
return 0;
else if (sgn(det(lower[id - 1] - p, lower[id] - p)) == 0)
return 2;
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)return 0;
else if (upper[id].y == p.y)return 3;
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y > upper[id + 1].y)
return 2;
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y == upper[id + 1].y)
return 3;
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
return 0;
else if (sgn(det(upper[id - 1] - p, upper[id] - p)) == 0)
return 2;
return 1;
}
bool get_tan(point p, int &i0, int &i1)
{// 求点 p 关于凸包的两个切点, 如果在凸包外则有序返回编号, 共线的多个切点返回任意一个, 否则返回 false
i0 = i1 = 0;
int id = int(std::lower_bound(lower.begin(), lower.end(), p) - lower.begin());
search(0, id, p, i0, i1);
search(id, (int) lower.size(), p, i0, i1);
id = int(std::lower_bound(upper.begin(), upper.end(), p, std::greater<point>()) - upper.begin());
search((int) lower.size() - 1, (int) lower.size() - 1 + id, p, i0, i1);
search((int) lower.size() - 1 + id, (int) lower.size() - 1 + (int) upper.size(), p, i0, i1);
return true;
}
bool my_get_tan(point p, int &i0, int &i1)//自己魔改,常数大,可求点在凸包上的切线
{
if (p.x < lower[0].x || p.x > lower.back().x)
{
get_tan(p, i0, i1);
return true;
}
int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
if (lower[id].x == p.x)
{
if (lower[id].y > p.y)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(lower[id].y - p.y) == 0)
{
i0 = (id - 1 + n) % n, i1 = (id + 1) % n;
return true;
}
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y < lower[id + 1].y)
{
i0 = id, i1 = (id + 1) % n;
return true;
}
else if (id + 1 < lower.size() && lower[id + 1].x == p.x && p.y == lower[id + 1].y)
{
i0 = id, i1 = (id + 2) % n;
return true;
}
}
else if (det(lower[id - 1] - p, lower[id] - p) < 0)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(det(lower[id - 1] - p, lower[id] - p)) == 0)
{
i0 = (id - 1 + n) % n, i1 = id;
return true;
}
id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
if (upper[id].x == p.x)
{
if (upper[id].y < p.y)
{
get_tan(p, i0, i1);
return true;
}
else if (upper[id].y == p.y)
{
i0 = id + lower.size() - 1;
i1 = (i0 + 1 + n) % n;
i0 = (i0 + n - 1) % n;
return true;
}
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y > upper[id + 1].y)
{
i0 = id + lower.size() - 1;
i1 = (i0 + 1) % n;
i0 = (i0 + n) % n;
return true;
}
else if (id + 1 < upper.size() && upper[id + 1].x == p.x && p.y == upper[id + 1].y)
{
i0 = n - 1, i1 = 1;
return true;
}
}
else if (det(upper[id - 1] - p, upper[id] - p) < 0)
{
get_tan(p, i0, i1);
return true;
}
else if (sgn(det(upper[id - 1] - p, upper[id] - p)) == 0)
{
i0 = (id + lower.size() - 1 + n) % n;
i1 = (i0 - 1 + n) % n;
std::swap(i0, i1);
return true;
}
return false;
}
// 求凸包上和向量 vec 叉积最大的点, 返回编号, 共线的多个切点返回任意一个
int get_tan(point vec)
{
std::pair<LD, int> ret = get_tan(upper, vec);
ret.second = (ret.second + (int) lower.size() - 1) % n;
ret = std::max(ret, get_tan(lower, vec));
return ret.second;
}
bool my_judge_intersect_segment(cp u, cp v)//判断线段与凸包是否有严格相交,即有无穿过内部,默认起点和终点不在凸包内部了
{
int u1, u2;
my_get_tan(u, u1, u2);
if (!turn_left(u, a[u2], v) || !turn_left(u, v, a[u1]))
return false;
my_get_tan(v, u1, u2);
if (!turn_left(v, a[u2], u) || !turn_left(v, u, a[u1]))
return false;
return true;
}
// 求凸包和直线 u,v 的交点, 如果无严格相交返回 false. 如果有则是和 (i,next(i)) 的交点, 两个点无序, 交在点上不确定返回前后两条线段其中之一
bool get_inter(point u, point v, int &i0, int &i1)
{
int p0 = get_tan(u - v), p1 = get_tan(v - u);
if (sgn(det(v - u, a[p0] - u)) * sgn(det(v - u, a[p1] - u)) < 0)
{
if (p0 > p1)std::swap(p0, p1);
i0 = search(u, v, p0, p1);
i1 = search(u, v, p1, p0 + n);
return true;
}
else return false;
}
};
bool in_polygon(cp p, const std::vector<point> &po)//判断点是否在多边形里
{
int n = (int) po.size();
int cnt = 0;
for (int i = 0; i < n; i++)
{
point a = po[i], b = po[(i + 1) % n];
if (point_on_segment(p, line(a, b)))return true;
int x = sgn(det(p - a, b - a)), y = sgn(a.y - p.y), z = sgn(b.y - p.y);
if (x > 0 && y <= 0 && z > 0)++cnt;
if (x < 0 && z <= 0 && y > 0)--cnt;
}
return cnt != 0;
}
bool In_Polygon(cp P, std::vector<point> &polygon)//判断点是否在多边形里面,射线法O(n)
{
bool flag = false; //相当于计数
point P1, P2; //多边形一条边的两个顶点
int n = polygon.size();
for (int i = 0, j = n - 1; i < n; j = i++)
{
//polygon[]是给出多边形的顶点
P1 = polygon[i];
P2 = polygon[j];
if (point_on_segment(P, line(P1, P2)))return true;
//前一个判断min(P1.y,P2.y)<P.y<=max(P1.y,P2.y)
//这个判断代码我觉得写的很精妙 我网上看的 应该是大神模版
//后一个判断被测点 在 射线与边交点 的左边
if ((sgn(P1.y - P.y) > 0 != sgn(P2.y - P.y) > 0) &&
sgn(P.x - (P.y - P1.y) * (P1.x - P2.x) / (P1.y - P2.y) - P1.x) < 0)
flag = !flag;
}
return flag;
}
std::vector<point> Minkovski(std::vector<std::vector<point>> a)//可处理退化成线段的凸包
{ //闵可夫斯基和
std::vector<point> S;
int n = a[0].size(), m = a[1].size();
std::vector<point> A(n), B(m);
for (int i = 0; i < n - 1; i++) A[i] = a[0][i + 1] - a[0][i];
A[n - 1] = a[0][0] - a[0][n - 1];
for (int i = 0; i < m - 1; i++) B[i] = a[1][i + 1] - a[1][i];
B[m - 1] = a[1][0] - a[1][m - 1]; //将两个凸包上的边向量都存入a,b中
S.push_back(a[0][0] + a[1][0]);
int p1 = 0, p2 = 0;
while (p1 < n && p2 < m)
{
LD d = det(A[p1], B[p2]);
if (d > 0)
S.push_back(S.back() + A[p1++]);
else if (d < 0)
S.push_back(S.back() + B[p2++]);
else
{
if (dot(A[p1], B[p1]) >= 0)
S.push_back(S.back() + A[p1++]);
else
{
auto [x, y] = A[p1];
if (x > 0)
S.push_back(S.back() + A[p1++]);
else if (x < 0)
S.push_back(S.back() + B[p2++]);
else
{
if (y > 0)
S.push_back(S.back() + A[p1++]);
else S.push_back(S.back() + B[p2++]);
}
}
}
}
while (p1 < n)
S.push_back(S.back() + A[p1++]);
while (p2 < m)
S.push_back(S.back() + B[p2++]);
return S;
}
LD farthest_pair(std::vector<point> pu)//最远点对
{
pu = convex_hull(pu);
std::vector<std::vector<point>> ppu(2);
std::vector<point> pu1;
for (auto x: pu)
pu1.push_back(x * -1);
pu1 = convex_hull(pu1);
ppu[0] = pu, ppu[1] = pu1;
auto ret = Minkovski(ppu);
LD ans = 0;
for (auto x: ret)
ans = std::max(ans, x.len());
return ans;
}
LD closest_pair(std::vector<point> pu)//最近点对O(nlogn)
{
int n = pu.size();
std::sort(pu.begin(), pu.end());
for (int i = 1; i < n; i++)
if (pu[i] == pu[i - 1])
return 0;
std::set<point, decltype([](cp u, cp v)
{ return u.y == v.y ? u.x < v.x : u.y < v.y; })> s;
LD ans = (pu[0] - pu[1]).len2();
for (int i = 0, j = 0; i < n; i++)
{
if (ans == 0)
break;
auto it = s.begin();
while (!s.empty() && j < i && sqr(pu[i].x - pu[j].x) >= ans)
s.erase(pu[j++]);
auto oit = s.lower_bound(pu[i]);
it = oit;
while (ans)
{
if (it == s.end())
break;
if (sqr(it->y - pu[i].y) >= ans)
break;
ans = std::min(ans, (pu[i] - *it).len2());
it++;
}
it = oit;
while (ans)
{
if (it == s.begin())
break;
it--;
if (sqr(it->y - pu[i].y) >= ans)
break;
ans = std::min(ans, (pu[i] - *it).len2());
}
s.insert(pu[i]);
}
return sqrtl(ans);
}
void print(std::vector<point> res)
{
std::cout << "print:\n";
int cnt = 0;
for (auto [x, y]: res)
std::cout << ++cnt << ' ' << x << ' ' << y << std::endl;
std::cout << "end\n";
}
int onRight(cl a, cp b)
{ return det(a.t - a.s, b - a.s) <= -eps; }//如果要包含点就-eps,不要就eps
/*
丢直线 Ax+By+C<0;
if(sgn(b)==0)
pl.push_back(line(point(-c/a,0),point(-c/a-b,a)));
else pl.push_back(line(point(0,-c/b),point(-b,-c/b+a)));
* */
std::vector<point> my_half_plane(std::vector<line> a)
{
/*要加框取消注释 请注意对于一组解(x,y)x和y是否有要求
a.push_back({{-INF,-INF},{INF,-INF}});
a.push_back({{INF,-INF},{INF,INF}});
a.push_back({{INF,INF},{-INF,INF}});
a.push_back({{-INF,INF},{-INF,-INF}});
*/
std::sort(a.begin(), a.end(), [&](auto x, auto y)
{
point u = x.t - x.s, v = y.t - y.s;
if (u.on_up() != v.on_up())return u.on_up() < v.on_up();
if (sgn(det(u, v)))
return sgn(det(u, v)) > 0;
else return sgn(det(x.t - y.s, y.t - y.s)) < 0;
});
int n = a.size();
std::vector<line> que(n + 1);
std::vector<point> p1(n + 1);
std::vector<point> p2;
int left = 0, right = 0;
que[0] = a[0];
std::vector<point> sb;
for (int i = 1; i < n; i++)
{
if (sgn(det(a[i].t - a[i].s, a[i - 1].t - a[i - 1].s)) == 0)
continue;
while (left < right && onRight(a[i], p1[right]))right--;
while (left < right && onRight(a[i], p1[left + 1]))left++;
que[++right] = a[i];
if (std::abs(det(que[right].t - que[right].s, que[right - 1].t - que[right - 1].s)) <= eps)
{
if (onRight(que[right], que[right - 1].s) &&
dot(que[right].t - que[right].s, que[right - 1].t - que[right - 1].s) <= -eps)
return sb;
right--;
if (!onRight(que[right], a[i].s))
que[right] = a[i];
}
if (left < right)p1[right] = line_intersect(que[right], que[right - 1]);
}
while (left < right && onRight(que[left], p1[right]))right--;
if (right - left <= 1)return sb;
p1[left] = line_intersect(que[left], que[right]);
for (int i = left; i <= right; i++)
p2.push_back(p1[i]);
return p2;
}
/*
丢直线 Ax+By+C<0;
if(sgn(b)==0)
pl.push_back(line(point(-c/a,0),point(-c/a-b,a)));
else pl.push_back(line(point(0,-c/b),point(-b,-c/b+a)));
* */
LD get_are(std::vector<point> pu)
{
LD ans = 0;
int n = pu.size();
for (int i = 0; i < n; i++)
ans += det(pu[i], pu[(i + 1) % n]);
return ans / 2;
}
LD get_max_inscribed_circle(const std::vector<point> pu)
{
int n = pu.size();
std::vector<point> dt(n);
for (int i = 0; i < n; i++)
dt[i] = ((pu[(i + 1) % n] - (pu[i] + pu[(i + 1) % n]) / 2).rot90()).unit();
LD l = 0, r = 1e7;
std::function<bool(LD)> check = [&](LD r)
{
std::vector<line> pl;
for (int i = 0; i < n; i++)
pl.push_back({pu[i] + dt[i] * r, pu[(i + 1) % n] + dt[i] * r});
auto po = my_half_plane(pl);
return !po.empty();
};
while (r - l > 1e-4)
{
LD mid = (r + l) / 2;
if (check(mid))
l = mid;
else r = mid;
}
return l;
}
long long get_ans(std::vector<point> pu)
{
long long res = 0;
LD max_x = -1e18, min_x = 1e18, max_y = -1e18, min_y = 1e18;
LD len_x, len_y;
for (int i = 0; i < 3; i++)
max_x = std::max(max_x, pu[i].x), min_x = std::min(min_x, pu[i].x),
max_y = std::max(max_y, pu[i].y), min_y = std::min(min_y, pu[i].y);
len_x = max_x - min_x;
len_y = max_y - min_y;
if (len_x < len_y)
{
std::sort(pu.begin(), pu.end(), [&](auto u, auto v)
{ return u.x < v.x; });
long long x_l, x_r;
if (sgn(pu[0].x - (long long) roundl(pu[0].x)) == 0)
x_l = (long long) roundl(pu[0].x) + 1;
else x_l = floorl(pu[0].x) + 1;
if (sgn(pu[2].x - (long long) roundl(pu[2].x)) == 0)
x_r = (long long) roundl(pu[2].x) - 1;
else x_r = floor(pu[2].x);
for (long long i = x_l; i <= x_r; i++)
{
line li = line(point(i, 0), point(i, 1));
point p1, p2;
p1 = line_intersect(li, line(pu[0], pu[2]));
if (i < pu[1].x)
p2 = line_intersect(li, line(pu[0], pu[1]));
else
p2 = line_intersect(li, line(pu[1], pu[2]));
if (p1.y > p2.y)
std::swap(p1, p2);
long long y_l, y_r;
if (sgn(p1.y - (long long) roundl(p1.y)) == 0)
y_l = (long long) roundl(p1.y) + 1;
else y_l = floorl(p1.y) + 1;
if (sgn(p2.y - (long long) roundl(p2.y)) == 0)
y_r = (long long) roundl(p2.y) - 1;
else y_r = floorl(p2.y);
res += y_r - y_l + 1;
}
}
else
{
std::sort(pu.begin(), pu.end(), [&](auto u, auto v)
{ return u.y < v.y; });
long long y_l, y_r;
if (sgn(pu[0].y - (long long) roundl(pu[0].y)) == 0)
y_l = (long long) roundl(pu[0].y) + 1;
else y_l = floorl(pu[0].y) + 1;
if (sgn(pu[2].y - (long long) roundl(pu[2].y)) == 0)
y_r = (long long) roundl(pu[2].y) - 1;
else y_r = floor(pu[2].y);
for (long long i = y_l; i <= y_r; i++)
{
line li = line(point(0, i), point(1, i));
point p1, p2;
p1 = line_intersect(li, line(pu[0], pu[2]));
if (i < pu[1].y)
p2 = line_intersect(li, line(pu[0], pu[1]));
else
p2 = line_intersect(li, line(pu[1], pu[2]));
if (p1.x > p2.x)
std::swap(p1, p2);
long long x_l, x_r;
if (sgn(p1.x - (long long) roundl(p1.x)) == 0)
x_l = (long long) roundl(p1.x) + 1;
else x_l = floorl(p1.x) + 1;
if (sgn(p2.x - (long long) roundl(p2.x)) == 0)
x_r = (long long) roundl(p2.x) - 1;
else x_r = floorl(p2.x);
res += x_r - x_l + 1;
}
}
return res;
}
bool check(point a,point b,point c,point d)
{
point p1=b-a;
if(p1.x==0||p1.y==0)
{
if(sgn(point_to_line(a,line(c,d))-1)==0)
return true;
}
long long res=0;
long long t=std::gcd((long long)std::abs(p1.y),(long long)std::abs(p1.x));
res+=t-1;
p1=d-c;
t=std::gcd((long long)std::abs(p1.y),(long long)std::abs(p1.x));
res+=t-1;
p1=a-d;
t=std::gcd((long long)std::abs(p1.y),(long long)std::abs(p1.x));
if(t!=1)
return false;
p1=b-c;
t=std::gcd((long long)std::abs(p1.y),(long long)std::abs(p1.x));
if(t!=1)
return false;
res+=4;
// res*=2;
res-=2;
std::vector<point>pu;
pu.push_back(a);
pu.push_back(b);
pu.push_back(c);
pu.push_back(d);
if(sgn(res- get_are(pu)*2)==0)
return true;
else return false;
}
void solve()
{
int n;
std::cin >> n;
std::vector<point> pu(n);
for (int i = 0; i < n; i++)
pu[i].read();
long long ans = 0;
if (n < 4)
{
std::cout << "infinitely many" << std::endl;
return;
}
for (int i = 0; i < n; i++)
{
point p1 = pu[i], p2 = pu[(i + 1) % n], p3 = pu[(i + 2) % n], p4 = pu[(i + 3) % n];
if (!ray_intersect_judge(line(p1, p2), line(p4, p3)))
{
if(check(p1,p2,p3,p4))
continue;
std::cout << "infinitely many" << std::endl;
return;
}
std::vector<point> pu1;
pu1.push_back(p2);
pu1.push_back(p3);
pu1.push_back(line_intersect(line(p1, p2), line(p3, p4)));
ans += get_ans(pu1);
// pu[i].print();
// std::cout<<get_ans(pu1)<<std::endl;
}
std::cout << ans << std::endl;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0), std::cout.tie(0);
std::cout << std::fixed << std::setprecision(9);
int T = 1;
// std::cin>>T;
for (int i = 1; i <= T; i++)
solve();
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3748kb
input:
5 0 2 -2 0 -1 -3 1 -3 2 1
output:
23
result:
ok single line: '23'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3816kb
input:
4 -7 -7 7 -7 7 7 -7 7
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3760kb
input:
4 -1000 1000 -1000 999 -999 999 -999 1000
output:
0
result:
ok single line: '0'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3936kb
input:
6 0 -901 900 -900 900 900 0 901 -900 900 -900 -900
output:
1457999998
result:
ok single line: '1457999998'
Test #5:
score: 0
Accepted
time: 1ms
memory: 3692kb
input:
6 900 -900 901 0 900 900 -900 900 -901 0 -900 -900
output:
1457999998
result:
ok single line: '1457999998'
Test #6:
score: 0
Accepted
time: 0ms
memory: 3988kb
input:
6 0 0 400 1 400 2 0 3 -400 2 -400 1
output:
1596
result:
ok single line: '1596'
Test #7:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
6 0 -901 900 -899 900 900 0 901 -900 900 -900 -899
output:
970921796
result:
ok single line: '970921796'
Test #8:
score: 0
Accepted
time: 1ms
memory: 3760kb
input:
6 2 -2 401 399 399 401 -2 2 -401 -399 -399 -401
output:
4794
result:
ok single line: '4794'
Test #9:
score: 0
Accepted
time: 1ms
memory: 3732kb
input:
6 399 -401 401 -399 2 2 -399 401 -401 399 -2 -2
output:
4794
result:
ok single line: '4794'
Test #10:
score: 0
Accepted
time: 0ms
memory: 3932kb
input:
4 -1 -1 -2 -2 -2 -3 -1 -2
output:
0
result:
ok single line: '0'
Test #11:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
4 0 0 0 1 -1 2 -1 1
output:
0
result:
ok single line: '0'
Test #12:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
48 5 -70 14 -68 22 -66 31 -63 39 -58 46 -52 52 -46 58 -39 63 -31 66 -22 68 -14 70 -5 70 5 68 14 66 22 63 31 58 39 52 46 46 52 39 58 31 63 22 66 14 68 5 70 -5 70 -14 68 -22 66 -31 63 -39 58 -46 52 -52 46 -58 39 -63 31 -66 22 -68 14 -70 5 -70 -5 -68 -14 -66 -22 -63 -31 -58 -39 -52 -46 -46 -52 -39 -58 ...
output:
36
result:
ok single line: '36'
Test #13:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
4 -10 -10 -11 11 -11 10 -10 -11
output:
0
result:
ok single line: '0'
Test #14:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
4 10 -10 10 -11 11 10 11 11
output:
0
result:
ok single line: '0'
Test #15:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
4 5 5 6 5 -5 6 -6 6
output:
0
result:
ok single line: '0'
Test #16:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
4 100 -99 -99 -98 -100 -98 99 -99
output:
0
result:
ok single line: '0'
Test #17:
score: 0
Accepted
time: 0ms
memory: 3944kb
input:
4 0 1 -1 0 0 -1 1 0
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #18:
score: 0
Accepted
time: 1ms
memory: 3884kb
input:
4 -1000 0 0 -1000 1000 0 0 1000
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #19:
score: 0
Accepted
time: 0ms
memory: 3992kb
input:
4 -1000 1000 -1000 -1000 1000 -1000 1000 1000
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #20:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
4 0 0 0 2 -1 2 -1 1
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #21:
score: 0
Accepted
time: 0ms
memory: 3816kb
input:
4 -3 -2 -4 -2 -4 -3 -3 -4
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #22:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
4 6 -2 5 -2 4 -3 6 -3
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #23:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
48 4 -60 12 -59 19 -57 26 -54 33 -50 39 -45 45 -39 50 -33 54 -26 57 -19 59 -12 60 -4 60 4 59 12 57 19 54 26 50 33 45 39 39 45 33 50 26 54 19 57 12 59 4 60 -4 60 -12 59 -19 57 -26 54 -33 50 -39 45 -45 39 -50 33 -54 26 -57 19 -59 12 -60 4 -60 -4 -59 -12 -57 -19 -54 -26 -50 -33 -45 -39 -39 -45 -33 -50 ...
output:
40
result:
ok single line: '40'
Test #24:
score: 0
Accepted
time: 0ms
memory: 3724kb
input:
4 7 3 7 4 5 4 6 3
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #25:
score: 0
Accepted
time: 0ms
memory: 3748kb
input:
4 -1000 0 -999 -1000 -998 0 -999 1000
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #26:
score: 0
Accepted
time: 0ms
memory: 3744kb
input:
4 0 -1000 1000 -999 0 -998 -1000 -999
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #27:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
3 999 -1000 1000 -1000 1000 -999
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #28:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
3 -2 -1 -2 -2 -1 -2
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #29:
score: 0
Accepted
time: 1ms
memory: 3692kb
input:
3 -1 0 0 1 -1 1
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #30:
score: 0
Accepted
time: 1ms
memory: 3992kb
input:
3 5 0 5 1 4 1
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #31:
score: 0
Accepted
time: 0ms
memory: 3984kb
input:
3 -777 -777 777 776 0 0
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #32:
score: 0
Accepted
time: 1ms
memory: 3880kb
input:
3 42 -13 42 -14 44 -13
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #33:
score: 0
Accepted
time: 1ms
memory: 3728kb
input:
3 -123 55 -122 57 -123 57
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #34:
score: 0
Accepted
time: 1ms
memory: 3868kb
input:
48 7 -99 19 -98 32 -94 44 -89 55 -83 66 -75 75 -66 83 -55 89 -44 94 -32 98 -19 99 -7 99 7 98 19 94 32 89 44 83 55 75 66 66 75 55 83 44 89 32 94 19 98 7 99 -7 99 -19 98 -32 94 -44 89 -55 83 -66 75 -75 66 -83 55 -89 44 -94 32 -98 19 -99 7 -99 -7 -98 -19 -94 -32 -89 -44 -83 -55 -75 -66 -66 -75 -55 -83 ...
output:
156
result:
ok single line: '156'
Test #35:
score: 0
Accepted
time: 1ms
memory: 3884kb
input:
5 0 -1000 1000 -999 999 1000 -1000 1000 -1000 -999
output:
7986005002
result:
ok single line: '7986005002'
Test #36:
score: 0
Accepted
time: 1ms
memory: 3716kb
input:
6 -999 1000 -1000 0 -999 -1000 999 -1000 999 -1 998 999
output:
2992004004
result:
ok single line: '2992004004'
Test #37:
score: 0
Accepted
time: 0ms
memory: 3868kb
input:
12 -923 -771 -612 -869 778 -976 933 -289 930 553 907 731 845 822 324 920 -913 699 -957 596 -967 269 -946 -455
output:
609372
result:
ok single line: '609372'
Test #38:
score: 0
Accepted
time: 0ms
memory: 3820kb
input:
9 -497 -908 741 -696 978 -393 892 690 863 986 -510 934 -672 659 -972 60 -963 -762
output:
1867855
result:
ok single line: '1867855'
Test #39:
score: 0
Accepted
time: 1ms
memory: 3680kb
input:
21 -804 -988 -393 -993 806 -997 893 -982 986 -870 996 -744 1000 -268 1000 194 999 638 997 666 971 928 957 943 828 989 778 992 501 997 -692 1000 -964 991 -990 936 -993 521 -995 -929 -965 -956
output:
34183
result:
ok single line: '34183'
Test #40:
score: 0
Accepted
time: 1ms
memory: 3692kb
input:
15 -947 -801 -516 -997 427 -998 541 -998 566 -997 927 -966 990 -932 998 471 991 896 817 964 536 997 -715 998 -868 922 -993 664 -958 -492
output:
170756
result:
ok single line: '170756'
Test #41:
score: 0
Accepted
time: 1ms
memory: 3708kb
input:
5 1000 998 -999 1000 -1000 999 -998 -999 999 -1000
output:
5326010345
result:
ok single line: '5326010345'
Test #42:
score: 0
Accepted
time: 1ms
memory: 3692kb
input:
8 0 2 0 1 1 0 2 0 3 1 3 2 2 3 1 3
output:
0
result:
ok single line: '0'
Test #43:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
5 1000 0 999 1000 -1000 999 -1000 -1000 999 -1000
output:
7986005002
result:
ok single line: '7986005002'
Test #44:
score: 0
Accepted
time: 1ms
memory: 3676kb
input:
5 0 1000 -1000 999 -999 -1000 1000 -1000 1000 999
output:
7986005002
result:
ok single line: '7986005002'
Test #45:
score: 0
Accepted
time: 1ms
memory: 3872kb
input:
4 1000 1000 999 1000 999 999 1000 999
output:
0
result:
ok single line: '0'
Test #46:
score: 0
Accepted
time: 0ms
memory: 3820kb
input:
5 -1000 0 -999 -1000 1000 -999 1000 1000 -999 1000
output:
7986005002
result:
ok single line: '7986005002'
Test #47:
score: 0
Accepted
time: 1ms
memory: 3764kb
input:
50 883 0 876 110 855 219 820 325 773 425 714 519 643 604 562 680 473 745 375 798 272 839 165 867 55 881 -55 881 -165 867 -272 839 -375 798 -473 745 -562 680 -643 604 -714 519 -773 425 -820 325 -855 219 -876 110 -883 0 -876 -110 -855 -219 -820 -325 -773 -425 -714 -519 -643 -604 -562 -680 -473 -745 -3...
output:
19136
result:
ok single line: '19136'
Test #48:
score: 0
Accepted
time: 1ms
memory: 3740kb
input:
49 750 0 743 95 725 190 695 281 653 368 601 448 538 521 467 586 388 641 303 685 213 719 119 740 24 749 -72 746 -166 731 -259 703 -346 664 -429 615 -504 555 -571 486 -628 409 -675 325 -711 236 -736 143 -748 48 -748 -48 -736 -143 -711 -236 -675 -325 -628 -409 -571 -486 -504 -555 -429 -615 -346 -664 -2...
output:
14376
result:
ok single line: '14376'
Test #49:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
42 1000 0 988 149 955 294 900 433 826 563 733 680 623 781 500 866 365 930 222 974 74 997 -74 997 -222 974 -365 930 -499 866 -623 781 -733 680 -826 563 -900 433 -955 294 -988 149 -1000 0 -988 -149 -955 -294 -900 -433 -826 -563 -733 -680 -623 -781 -500 -866 -365 -930 -222 -974 -74 -997 74 -997 222 -97...
output:
34900
result:
ok single line: '34900'
Test #50:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
33 100 0 98 18 92 37 84 54 72 69 58 81 41 90 23 97 4 99 -14 98 -32 94 -49 86 -65 75 -78 61 -88 45 -95 28 -99 9 -99 -9 -95 -28 -88 -45 -78 -61 -65 -75 -50 -86 -32 -94 -14 -98 4 -99 23 -97 41 -90 58 -81 72 -69 84 -54 92 -37 98 -18
output:
515
result:
ok single line: '515'
Test #51:
score: 0
Accepted
time: 1ms
memory: 3988kb
input:
25 500 0 484 124 438 240 364 342 267 422 154 475 31 499 -93 491 -212 452 -318 385 -404 293 -464 184 -496 62 -496 -62 -464 -184 -404 -293 -318 -385 -212 -452 -93 -491 31 -499 154 -475 267 -422 364 -342 438 -240 484 -124
output:
24994
result:
ok single line: '24994'
Test #52:
score: 0
Accepted
time: 1ms
memory: 3888kb
input:
19 900 0 851 292 710 552 492 753 220 872 -74 896 -361 824 -609 662 -791 428 -887 148 -887 -148 -791 -428 -609 -662 -361 -824 -74 -896 220 -872 492 -753 710 -552 851 -292
output:
142538
result:
ok single line: '142538'
Test #53:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
7 800 0 498 625 -178 779 -720 347 -720 -347 -178 -779 498 -625
output:
1054757
result:
ok single line: '1054757'
Test #54:
score: 0
Accepted
time: 1ms
memory: 3724kb
input:
6 999 0 499 865 -499 865 -999 0 -499 -865 499 -865
output:
2588522
result:
ok single line: '2588522'
Test #55:
score: 0
Accepted
time: 3ms
memory: 3728kb
input:
5 1000 0 309 951 -809 587 -809 -587 309 -951
output:
5311708
result:
ok single line: '5311708'
Test #56:
score: 0
Accepted
time: 1ms
memory: 3692kb
input:
4 999 -999 999 -1000 1000 -1000 1000 -999
output:
0
result:
ok single line: '0'
Test #57:
score: 0
Accepted
time: 1ms
memory: 3884kb
input:
5 6 4 5 10 4 13 5 7 6 3
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #58:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
5 -4 6 -10 5 -13 4 -7 5 -3 6
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #59:
score: 0
Accepted
time: 1ms
memory: 3724kb
input:
5 -6 -4 -5 -10 -4 -13 -5 -7 -6 -3
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #60:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
5 4 -6 10 -5 13 -4 7 -5 3 -6
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #61:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
5 -6 4 -6 3 -5 7 -4 13 -5 10
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #62:
score: 0
Accepted
time: 0ms
memory: 3728kb
input:
5 -4 -6 -3 -6 -7 -5 -13 -4 -10 -5
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #63:
score: 0
Accepted
time: 0ms
memory: 3652kb
input:
5 6 -4 6 -3 5 -7 4 -13 5 -10
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #64:
score: 0
Accepted
time: 1ms
memory: 3888kb
input:
5 4 6 3 6 7 5 13 4 10 5
output:
infinitely many
result:
ok single line: 'infinitely many'
Test #65:
score: 0
Accepted
time: 0ms
memory: 3932kb
input:
4 -800 -100 -799 -103 -798 -105 -799 -102
output:
0
result:
ok single line: '0'
Test #66:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
4 602 -59 600 -60 603 -59 605 -58
output:
0
result:
ok single line: '0'
Test #67:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
4 -999 -999 -1000 -999 -1000 -1000 -999 -1000
output:
0
result:
ok single line: '0'
Test #68:
score: 0
Accepted
time: 1ms
memory: 3864kb
input:
4 -50 50 -52 51 -51 50 -49 49
output:
0
result:
ok single line: '0'
Test #69:
score: 0
Accepted
time: 1ms
memory: 3812kb
input:
4 5 0 6 0 7 1 6 1
output:
0
result:
ok single line: '0'
Test #70:
score: 0
Accepted
time: 1ms
memory: 3884kb
input:
4 3 -3 4 -4 5 -4 4 -3
output:
0
result:
ok single line: '0'