QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#330091#8055. Balanceucup-team3099#WA 233ms3872kbC++2317.3kb2024-02-17 12:15:112024-02-17 12:15:11

Judging History

你现在查看的是最新测评结果

  • [2024-02-17 12:15:11]
  • 评测
  • 测评结果:WA
  • 用时:233ms
  • 内存:3872kb
  • [2024-02-17 12:15:11]
  • 提交

answer

// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif

template<class T>
struct graph{
	using Weight_t = T;
	struct Edge_t{
		int from, to;
		T cost;
	};
	int n;
	vector<Edge_t> edge;
	vector<vector<int>> adj;
	function<bool(int)> ignore;
	graph(int n = 1): n(n), adj(n){
		assert(n >= 1);
	}
	graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
		assert(n >= 1);
		if(undirected){
			for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
		}
		else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
	}
	graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
		assert(n >= 1);
		if(undirected){
			for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
		}
		else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
	}
	graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
		assert(n >= 1);
		for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
	}
	graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
		assert(n >= 1);
		for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
	}
	int operator()(int u, int id) const{
		#ifdef LOCAL
		assert(0 <= id && id < (int)edge.size());
		assert(edge[id].from == u || edge[id].to == u);
		#endif
		return u ^ edge[id].from ^ edge[id].to;
	}
	int link(int u, int v, T w = {}){ // insert an undirected edge
		int id = (int)edge.size();
		adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
		return id;
	}
	int orient(int u, int v, T w = {}){ // insert a directed edge
		int id = (int)edge.size();
		adj[u].push_back(id), edge.push_back({u, v, w});
		return id;
	}
	void clear(){
		for(auto [u, v, w]: edge){
			adj[u].clear();
			adj[v].clear();
		}
		edge.clear();
		ignore = {};
	}
	graph transposed() const{ // the transpose of the directed graph
		graph res(n);
		for(auto &e: edge) res.orient(e.to, e.from, e.cost);
		res.ignore = ignore;
		return res;
	}
	int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
		return (int)adj[u].size();
	}
	// The adjacency list is sorted for each vertex.
	vector<vector<int>> get_adjacency_list() const{
		vector<vector<int>> res(n);
		for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
			if(ignore && ignore(id)) continue;
			res[(*this)(u, id)].push_back(u);
		}
		return res;
	}
	void set_ignoration_rule(const function<bool(int)> &f){
		ignore = f;
	}
	void reset_ignoration_rule(){
		ignore = nullptr;
	}
	friend ostream &operator<<(ostream &out, const graph &g){
		for(auto id = 0; id < (int)g.edge.size(); ++ id){
			if(g.ignore && g.ignore(id)) continue;
			auto &e = g.edge[id];
			out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
		}
		return out;
	}
};

// Requires graph
template<class T>
struct dfs_forest{
	int n;
	T base_dist;
	vector<T> dist;
	vector<int> pv;
	vector<int> pe;
	vector<int> order;
	vector<int> pos;
	vector<int> end;
	vector<int> size;
	vector<int> root_of;
	vector<int> root;
	vector<int> depth;
	vector<int> min_depth;
	vector<int> min_depth_origin;
	vector<int> min_depth_spanning_edge;
	// extra_edge[u]: adjacent edges of u which is not part of the spanning forest found during the last dfs-like run.
	vector<vector<int>> extra_edge;
	vector<int> was;
	dfs_forest(T base_dist = 0): base_dist(base_dist){ }
	void init(int n){
		this->n = n;
		pv.assign(n, -1);
		pe.assign(n, -1);
		order.clear();
		pos.assign(n, -1);
		end.assign(n, -1);
		size.assign(n, 0);
		root_of.assign(n, -1);
		root.clear();
		depth.assign(n, -1);
		min_depth.assign(n, -1);
		min_depth_origin.assign(n, -1);
		min_depth_spanning_edge.assign(n, -1);
		dist.assign(n, base_dist);
		extra_edge.assign(n, {});
		was.assign(n, -2);
		attempt = -1;
	}
	int attempt;
	// O(# of nodes reachable from u)
	template<class U, class F = plus<>>
	void _dfs(const graph<U> &g, int u, F UT = plus<>()){
		depth[u] = 0;
		dist[u] = base_dist;
		root_of[u] = u;
		root.push_back(u);
		pv[u] = pe[u] = -1;
		auto recurse = [&](auto self, int u)->void{
			was[u] = attempt;
			pos[u] = (int)order.size();
			order.push_back(u);
			size[u] = 1;
			min_depth[u] = depth[u];
			min_depth_origin[u] = u;
			min_depth_spanning_edge[u] = -1;
			for(auto id: g.adj[u]){
				if(id == pe[u] || g.ignore && g.ignore(id)) continue;
				int v = g(u, id);
				if(was[v] == attempt){
					if(min_depth[u] > depth[v]){
						min_depth[u] = depth[v];
						min_depth_spanning_edge[u] = id;
					}
					if(pe[u] != id) extra_edge[u].push_back(id);
					continue;
				}
				depth[v] = depth[u] + 1;
				dist[v] = UT(g.edge[id].cost, dist[u]);
				pv[v] = u;
				pe[v] = id;
				root_of[v] = root_of[u];
				self(self, v);
				size[u] += size[v];
				if(min_depth[u] > min_depth[v]){
					min_depth[u] = min_depth[v];
					min_depth_origin[u] = min_depth_origin[v];
					min_depth_spanning_edge[u] = min_depth_spanning_edge[v];
				}
			}
			end[u] = (int)order.size();
		};
		recurse(recurse, u);
	}
	// O(# of nodes reachable from src)
	template<class U, class F = plus<>>
	void dfs(const graph<U> &g, const vector<int> &src, F UT = plus<>()){
		assert(g.n <= n);
		root.clear(), order.clear();
		++ attempt;
		for(auto u: src){
			assert(0 <= u && u < g.n);
			if(was[u] != attempt) _dfs(g, u, UT);
		}
	}
	// O(n + m)
	template<class U, class F = plus<>>
	void dfs_all(const graph<U> &g, F UT = plus<>()){
		assert(g.n <= n);
		root.clear(), order.clear();
		++ attempt;
		for(auto u = 0; u < g.n; ++ u) if(was[u] != attempt) _dfs(g, u, UT);
	}
	// Check if u is visited during the last dfs-like call.
	bool visited(int u) const{
		assert(0 <= u && u < n);
		return was[u] == attempt;
	}
	// Check if u is an ancestor of v in some spanning tree.
	bool ancestor_of(int u, int v) const{
		assert(visited(u) && visited(v));
		return pos[u] <= pos[v] && end[v] <= end[u];
	}
	// Check if any cycle is found during the last dfs-like call.
	// If must_contain_root = true, the sought cycle is forced to contain one of the root of the trees.
	template<class U>
	optional<pair<int, vector<int>>> find_any_cycle(const graph<U> &g, bool must_contain_root = false) const{
		for(auto u: order) for(auto id: extra_edge[u]){
			int v = g(u, id);
			if(!ancestor_of(v, u) || must_contain_root && root_of[v] != v) continue;
			vector<int> cycle_edge;
			while(u != v) cycle_edge.push_back(pe[u]), u = pv[u];
			reverse(cycle_edge.begin(), cycle_edge.end());
			cycle_edge.push_back(id);
			return pair{v, cycle_edge};
		}
		return {};
	}
};

// Requires graph
struct biconnected_components{
	int n, attempt, comp_attempt;
	vector<int> pos;
	vector<int> stack;
	vector<int> was;
	vector<int> comp_was;
	// block-cut tree descriptions
	vector<vector<int>> belongs; // vertex -> list of 2-vertex-connected components
	vector<vector<int>> comp_vertex; // list of vertices in a 2-vertex-connected component
	vector<vector<int>> comp_edge; // list of edges in a 2-vertex-connected component
	vector<int> bridge;
	void init(int n){
		this->n = n;
		pos.assign(n, -1);
		was.assign(n, -2);
		attempt = -1;
		comp_was.assign(n, -2);
		comp_attempt = -1;
		belongs.assign(n, {});
		comp_vertex.clear();
		comp_edge.clear();
		bridge.clear();
	}
	// O(n + m) where n and m are the number of reachable nodes and edges respectively.
	template<class T>
	void _run(const graph<T> &g, const vector<int> &src){
		int it = 0;
		auto recurse = [&](auto self, int u, int pe)->int{
			int low = pos[u] = ++ it;
			belongs[u].clear();
			was[u] = attempt;
			for(auto id: g.adj[u]){
				if(g.ignore && g.ignore(id) || id == pe) continue;
				int v = g(u, id);
				if(was[v] != attempt){
					was[v] = attempt;
					pos[v] = 0;
				}
				if(pos[v]){
					low = min(low, pos[v]);
					if(pos[v] < pos[u]) stack.push_back(id);
				}
				else{
					int size = (int)stack.size(), up = self(self, v, id);
					low = min(low, up);
					if(up == pos[u]){
						++ comp_attempt;
						stack.push_back(id);
						vector<int> comp_v;
						vector<int> comp_e(stack.begin() + size, stack.end());
						for(auto id: comp_e){
							auto [u, v, _] = g.edge[id];
							if(comp_was[u] != comp_attempt){
								comp_was[u] = comp_attempt;
								comp_v.push_back(u);
							}
							if(comp_was[v] != comp_attempt){
								comp_was[v] = comp_attempt;
								comp_v.push_back(v);
							}
						}
						for(auto u: comp_v) belongs[u].push_back((int)comp_vertex.size());
						comp_vertex.push_back(move(comp_v));
						comp_edge.push_back(move(comp_e));
						stack.resize(size);
					}
					else if(up < pos[u]) stack.push_back(id);
					else{
						belongs[g.edge[id].from].push_back((int)comp_vertex.size());
						belongs[g.edge[id].to].push_back((int)comp_vertex.size());
						comp_vertex.push_back({g.edge[id].from, g.edge[id].to});
						comp_edge.push_back({id});
						bridge.push_back(id);
					}
				}
			}
			return low;
		};
		for(auto u: src) if(was[u] != attempt) recurse(recurse, u, -1);
	}
	template<class T>
	void run(const graph<T> &g, const vector<int> &src){
		assert(g.n <= n);
		for(auto u: src) assert(0 <= u && u < g.n);
		comp_vertex.clear();
		comp_edge.clear();
		bridge.clear();
		++ attempt;
		_run(g, src);
	}
	template<class T>
	void run_all(const graph<T> &g){
		assert(g.n <= n);
		comp_vertex.clear();
		comp_edge.clear();
		bridge.clear();
		++ attempt;
		vector<int> src(g.n);
		iota(src.begin(), src.end(), 0);
		_run(g, src);
	}
	// Check if u is visited during the last run-like call.
	bool visited(int u) const{
		assert(0 <= u && u < n);
		return was[u] == attempt;
	}
	bool is_articulation_point(int u) const{
		assert(0 <= u && u < n && visited(n));
		return (int)belongs[u].size() >= 2;
	}
	bool is_bridge_component(int i) const{
		assert(0 <= i && i < (int)comp_vertex.size());
		return (int)comp_edge[i].size() == 1;
	}
	// # of 2-vertex-connected components
	int count() const{
		return (int)comp_vertex.size();
	}
};

template<bool Enable_small_to_large = true>
struct disjoint_set{
	int n, _group_count;
	vector<int> p;
	vector<list<int>> group;
	disjoint_set(){ }
	disjoint_set(int n): n(n), _group_count(n), p(n, -1), group(n){ assert(n >= 0);
		for(auto i = 0; i < n; ++ i) group[i] = {i};
	}
	int make_set(){
		p.push_back(-1);
		group.push_back(list<int>{p});
		++ _group_count;
		return n ++;
	}
	int root(int u){
		return p[u] < 0 ? u : p[u] = root(p[u]);
	}
	bool share(int a, int b){
		return root(a) == root(b);
	}
	int size(int u){
		return -p[root(u)];
	}
	bool merge(int u, int v){
		u = root(u), v = root(v);
		if(u == v) return false;
		-- _group_count;
		if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v);
		p[u] += p[v], p[v] = u;
		group[u].splice(group[u].end(), group[v]);
		return true;
	}
	bool merge(int u, int v, auto act){
		u = root(u), v = root(v);
		if(u == v) return false;
		-- _group_count;
		bool swapped = false;
		if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true;
		p[u] += p[v], p[v] = u;
		group[u].splice(group[u].end(), group[v]);
		act(u, v, swapped);
		return true;
	}
	int group_count() const{
		return _group_count;
	}
	const list<int> &group_of(int u){
		return group[root(u)];
	}
	vector<vector<int>> group_up(){
		vector<vector<int>> g(n);
		for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i);
		g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end());
		return g;
	}
	void clear(){
		_group_count = n;
		fill(p.begin(), p.end(), -1);
		for(auto i = 0; i < n; ++ i) group[i] = {i};
	}
	friend ostream &operator<<(ostream &out, disjoint_set dsu){
		auto gs = dsu.group_up();
		out << "{";
		if(!gs.empty()) for(auto i = 0; i < (int)gs.size(); ++ i){
			out << "{";
			for(auto j = 0; j < (int)gs[i].size(); ++ j){
				out << gs[i][j];
				if(j + 1 < (int)gs[i].size()) out << ", ";
			}
			out << "}";
			if(i + 1 < (int)gs.size()) out << ", ";
		}
		return out << "}";
	}
};

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	biconnected_components bcc;
	dfs_forest<int> df;
	auto __solve_tc = [&](auto __tc_num)->int{
		int n, m;
		cin >> n >> m;
		graph<int> g(n);
		for(auto i = 0; i < m; ++ i){
			int u, v;
			cin >> u >> v, -- u, -- v;
			g.link(u, v, 1);
		}
		vector<pair<int, int>> cnt;
		{
			map<int, int> _cnt;
			for(auto u = 0; u < n; ++ u){
				int x;
				cin >> x;
				++ _cnt[x];
			}
			cnt = {_cnt.begin(), _cnt.end()};
		}
		vector<int> cut;
		{
			int pref = 0;
			for(auto it = cnt.begin(); next(it) != cnt.end(); ++ it){
				cut.push_back(pref += it->second);
			}
		}
		int k = (int)cut.size();
		bcc.init(n);
		bcc.run_all(g);
		disjoint_set dsu(n);
		vector<int> is_bridge(m);
		for(auto id: bcc.bridge){
			is_bridge[id] = true;
		}
		for(auto id = 0; id < m; ++ id){
			if(!is_bridge[id]){
				auto [u, v, _] = g.edge[id];
				dsu.merge(u, v);
			}
		}
		vector<vector<int>> comp = dsu.group_up();
		vector<int> belong(n, -1);
		for(auto i = 0; i < (int)comp.size(); ++ i){
			for(auto u: comp[i]){
				belong[u] = i;
			}
		}
		graph<int> h((int)comp.size());
		for(auto id: bcc.bridge){
			auto [u, v, _] = g.edge[id];
			h.link(belong[u], belong[v]);
		}
		vector<int> size((int)comp.size());
		for(auto i = 0; i < (int)comp.size(); ++ i){
			size[i] = (int)comp[i].size();
		}
		df.init((int)comp.size());
		df.dfs(h, {0});
		for(auto &[u, v, _]: h.edge){
			if(df.depth[u] < df.depth[v]){
				swap(u, v);
			}
		}
		for(auto i: df.order | ranges::views::drop(1) | ranges::views::reverse){
			size[df.pv[i]] += size[i];
		}
		vector<int> dp_up((int)comp.size());
		vector<int> dp_down((int)comp.size());
		vector<int> prev_up((int)comp.size(), -1);
		vector<int> prev_down((int)comp.size(), -1);
		vector<int> res_cut((int)h.edge.size());
		for(auto i: df.order | ranges::views::reverse){
			for(auto id: h.adj[i]){
				if(id == df.pe[i]){
					continue;
				}
				int j = h(i, id);
				assert(dp_up[i] + dp_down[j] <= k);
				assert(dp_down[i] + dp_up[j] <= k);
				vector<int> seq;
				if(dp_up[i] + dp_down[j] == k){
					for(auto u = i; ~prev_up[u]; ){
						int id = prev_up[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					ranges::reverse(seq);
					seq.push_back(i);
					for(auto u = j; ~prev_down[u]; ){
						int id = prev_down[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
				}
				else if(dp_up[i] + dp_down[j] == k - 1 && size[j] == n - cut[dp_up[i]]){
					for(auto u = i; ~prev_up[u]; ){
						int id = prev_up[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					ranges::reverse(seq);
					seq.push_back(i);
					res_cut[id] = true;
					seq.push_back(j);
					for(auto u = j; ~prev_down[u]; ){
						int id = prev_down[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
				}
				else if(dp_down[i] + dp_up[j] == k){
					for(auto u = i; ~prev_down[u]; ){
						int id = prev_down[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					int _size = (int)seq.size();
					seq.push_back(i);
					for(auto u = j; ~prev_up[u]; ){
						int id = prev_up[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					ranges::reverse(seq | ranges::views::drop(_size));
				}
				else if(dp_down[i] + dp_up[j] == k - 1 && size[j] == cut[dp_up[j]]){
					for(auto u = i; ~prev_down[u]; ){
						int id = prev_down[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					int _size = (int)seq.size();
					seq.push_back(i);
					res_cut[id] = true;
					seq.push_back(j);
					for(auto u = j; ~prev_up[u]; ){
						int id = prev_up[u];
						res_cut[id] = true;
						seq.push_back(u = h.edge[id].from);
					}
					ranges::reverse(seq | ranges::views::drop(_size));
				}
				else{
					if(dp_up[i] < dp_up[j] + (size[j] == cut[dp_up[j]])){
						dp_up[i] = dp_up[j] + (size[j] == cut[dp_up[j]]);
						prev_up[i] = size[j] == cut[dp_up[j]] ? id : prev_up[j];
					}
					if(dp_down[i] < dp_down[j] + (size[j] == n - cut[k - 1 - dp_down[j]])){
						dp_down[i] = dp_down[j] + (size[j] == n - cut[k - 1 - dp_down[j]]);
						prev_down[i] = size[j] == n - cut[k - 1 - dp_down[j]] ? id : prev_down[j];
					}
					continue;
				}
				assert((int)seq.size() == k + 1);
				h.set_ignoration_rule([&](int id){ return res_cut[id]; });
				vector<int> res(n, -1);
				for(auto i = 0; i < (int)seq.size(); ++ i){
					int u = seq[i];
					df.dfs(h, {u});
					for(auto u: df.order){
						for(auto v: comp[u]){
							res[v] = cnt[i].first;
						}
					}
				}
				cout << "Yes\n";
				ranges::copy(res, ostream_iterator<int>(cout, " "));
				cout << "\n";
				if(ranges::min(res) < 0){
					cout.flush();
					assert(false);
				}
				return 0;
			}
		}
		cout << "No\n";
		return 0;
	};
	int __tc_cnt;
	cin >> __tc_cnt;
	for(auto __tc_num = 0; __tc_num < __tc_cnt; ++ __tc_num){
		__solve_tc(__tc_num);
	}
	return 0;
}

/*

*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3532kb

input:

5
5 4
1 2
2 3
3 4
4 5
1 2 3 4 5
5 4
1 2
1 3
1 4
1 5
1 2 3 4 5
5 4
1 2
1 3
1 4
1 5
1 2 2 2 3
5 6
1 2
1 2
2 3
3 4
4 5
3 5
1 2 1 2 1
2 2
1 2
1 2
1 2

output:

Yes
1 2 3 4 5 
No
Yes
2 1 3 2 2 
Yes
2 2 1 1 1 
No

result:

ok ok (5 test cases)

Test #2:

score: -100
Wrong Answer
time: 233ms
memory: 3872kb

input:

100000
4 3
4 2
1 3
2 1
2 1 3 2
5 7
2 5
5 3
2 3
5 1
4 3
2 4
4 3
1 3 1 1 2
3 2
2 1
2 3
1 1 1
4 7
3 4
1 4
2 3
4 3
4 2
3 1
4 3
2 3 3 2
4 6
2 4
3 1
1 2
1 2
2 3
4 2
1 1 3 3
4 7
3 2
4 2
1 2
3 4
3 2
2 4
3 4
2 1 1 1
5 5
3 2
1 5
4 5
4 3
2 1
1 2 2 3 2
3 5
2 3
1 3
3 1
3 1
2 1
3 2 3
2 3
2 1
2 1
1 2
1 1
2 3
2 1
1...

output:

Yes
2 2 1 3 
No
Yes
1 1 1 
No
No
Yes
2 1 1 1 
No
No
No
No
No
No
No
Yes
1 1 1 1 1 
Yes
1 3 1 1 1 
Yes
1 1 1 
Yes
1 2 
Yes
1 1 1 1 1 
Yes
1 2 
No
No
Yes
1 1 1 
Yes
1 1 
No
No
Yes
2 2 2 2 2 
No
Yes
1 1 
Yes
1 1 1 2 
No
No
No
Yes
1 1 
No
No
No
Yes
1 1 1 1 2 
Yes
1 2 1 1 
No
No
No
No
Yes
3 1 3 3 2 
Yes
1...

result:

wrong answer ans finds an answer, but out doesn't (test case 9)