QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#325698#6522. Digit ModeLainAC ✓326ms3808kbC++238.3kb2024-02-11 20:19:172024-02-11 20:19:18

Judging History

你现在查看的是最新测评结果

  • [2024-02-11 20:19:18]
  • 评测
  • 测评结果:AC
  • 用时:326ms
  • 内存:3808kb
  • [2024-02-11 20:19:17]
  • 提交

answer

#include "bits/stdc++.h"
using namespace std;


// Source: neal
// Modulo arithmetic
template <const int &MOD>
struct _m_int {
  int val;

  _m_int(int64_t v = 0) {
    if (v < 0) v = v % MOD + MOD;
    if (v >= MOD) v %= MOD;
    val = int(v);
  }

  _m_int(uint64_t v) {
    if (v >= MOD) v %= MOD;
    val = int(v);
  }

  _m_int(int v) : _m_int(int64_t(v)) {}
  _m_int(unsigned v) : _m_int(uint64_t(v)) {}

  static int inv_mod(int a, int m = MOD) {
    // https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
    int g = m, r = a, x = 0, y = 1;

    while (r != 0) {
      int q = g / r;
      g %= r;
      swap(g, r);
      x -= q * y;
      swap(x, y);
    }

    return x < 0 ? x + m : x;
  }

  explicit operator int() const { return val; }
  explicit operator unsigned() const { return val; }
  explicit operator int64_t() const { return val; }
  explicit operator uint64_t() const { return val; }
  explicit operator double() const { return val; }
  explicit operator long double() const { return val; }

  _m_int &operator+=(const _m_int &other) {
    val -= MOD - other.val;
    if (val < 0) val += MOD;
    return *this;
  }

  _m_int &operator-=(const _m_int &other) {
    val -= other.val;
    if (val < 0) val += MOD;
    return *this;
  }

  static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
    return unsigned(x % m);
#endif
    // Optimized mod for Codeforces 32-bit machines.
    // x must be less than 2^32 * m for this to work, so that x / m fits in an
    // unsigned 32-bit int.
    unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
    unsigned quot, rem;
    asm("divl %4\n" : "=a"(quot), "=d"(rem) : "d"(x_high), "a"(x_low), "r"(m));
    return rem;
  }

  _m_int &operator*=(const _m_int &other) {
    val = fast_mod(uint64_t(val) * other.val);
    return *this;
  }

  _m_int &operator/=(const _m_int &other) { return *this *= other.inv(); }

  friend _m_int operator+(const _m_int &a, const _m_int &b) {
    return _m_int(a) += b;
  }
  friend _m_int operator-(const _m_int &a, const _m_int &b) {
    return _m_int(a) -= b;
  }
  friend _m_int operator*(const _m_int &a, const _m_int &b) {
    return _m_int(a) *= b;
  }
  friend _m_int operator/(const _m_int &a, const _m_int &b) {
    return _m_int(a) /= b;
  }

  _m_int &operator++() {
    val = val == MOD - 1 ? 0 : val + 1;
    return *this;
  }

  _m_int &operator--() {
    val = val == 0 ? MOD - 1 : val - 1;
    return *this;
  }

  _m_int operator++(int) {
    _m_int before = *this;
    ++*this;
    return before;
  }
  _m_int operator--(int) {
    _m_int before = *this;
    --*this;
    return before;
  }

  _m_int operator-() const { return val == 0 ? 0 : MOD - val; }

  friend bool operator==(const _m_int &a, const _m_int &b) {
    return a.val == b.val;
  }
  friend bool operator!=(const _m_int &a, const _m_int &b) {
    return a.val != b.val;
  }
  friend bool operator<(const _m_int &a, const _m_int &b) {
    return a.val < b.val;
  }
  friend bool operator>(const _m_int &a, const _m_int &b) {
    return a.val > b.val;
  }
  friend bool operator<=(const _m_int &a, const _m_int &b) {
    return a.val <= b.val;
  }
  friend bool operator>=(const _m_int &a, const _m_int &b) {
    return a.val >= b.val;
  }

  _m_int inv() const { return inv_mod(val); }

  _m_int pow(int64_t p) const {
    if (p < 0) return inv().pow(-p);

    _m_int a = *this, result = 1;

    while (p > 0) {
      if (p & 1) result *= a;

      p >>= 1;

      if (p > 0) a *= a;
    }

    return result;
  }

  friend ostream &operator<<(ostream &os, const _m_int &m) {
    return os << m.val;
  }

  friend istream &operator>>(istream &is, _m_int &m) {
    int64_t x;
    is >> x;
    m = _m_int(x);
    return is;
  }
};

const int MOD = 1e9+7;
using mod_int = _m_int<MOD>;


// Source: Based on neal's choose implementation
// Tested on: ABC 235 G
namespace internal_choose {
std::vector<mod_int> factorial = {1}, inv_factorial = {1};
int built_max = 0;

void prepare_factorials(int max) {
  if (max <= built_max) return;
  max += max / 100;
  factorial.resize(max + 1);
  inv_factorial.resize(max + 1);
  for (int i = built_max + 1; i <= max; i++)
    factorial[i] = i * factorial[i - 1];
  inv_factorial[max] = factorial[max].inv();
  for (int i = max - 1; i > built_max; i--)
    inv_factorial[i] = inv_factorial[i + 1] * (i + 1);
  built_max = max;
}
};  // namespace internal_choose

mod_int factorial(int n) {
  if (n < 0) return 0;
  internal_choose::prepare_factorials(n);
  return internal_choose::factorial[n];
}

mod_int inv_factorial(int n) {
  if (n < 0) return 0;
  internal_choose::prepare_factorials(n);
  return internal_choose::inv_factorial[n];
}

mod_int choose(int n, int r) {
  if (r < 0 || r > n) return 0;
  internal_choose::prepare_factorials(n);
  return internal_choose::factorial[n] * internal_choose::inv_factorial[n - r] *
         internal_choose::inv_factorial[r];
}

mod_int permute(int n, int r) {
  if (r < 0 || r > n) return 0;
  internal_choose::prepare_factorials(n);
  return internal_choose::factorial[n] * internal_choose::inv_factorial[n - r];
}

mod_int inv_choose(int n, int r) {
  assert(r >= 0 && r <= n);
  internal_choose::prepare_factorials(n);
  return internal_choose::inv_factorial[n] * internal_choose::factorial[n - r] *
         internal_choose::factorial[r];
}

mod_int inv_permute(int n, int r) {
  assert(r >= 0 && r <= n);
  internal_choose::prepare_factorials(n);
  return internal_choose::inv_factorial[n] * internal_choose::factorial[n - r];
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(NULL);

  int tt;
  cin >> tt;
  while(tt--) {
    string n;
    cin >> n;

    auto poly_mult = [&](vector<mod_int>& a, vector<mod_int>& b, int tot_size)->vector<mod_int> {
      vector<mod_int> res(tot_size);
      for (int i =0; i < a.size(); i++) {
        for (int j =0; j < b.size(); j++) {
          if (i + j >= tot_size) break;
          res[i+j] += a[i] * b[j];
        }
      }
      return res;
    };

    auto F = [&](auto& self, int digit_count, array<int, 10>& start_count, bool can_start_zero)->mod_int {
      if (digit_count == 0) {
        int mxidx = 0;
        for (int i = 1; i < 10; i++) {
          if (start_count[mxidx] <= start_count[i]) mxidx = i;
        }
        return mxidx;
      }
      mod_int ans = 0;
      for (int mode = 1; mode < 10; mode++) {
        for (int mode_cnt = 0; mode_cnt <= digit_count; mode_cnt++) {
          int need = digit_count - mode_cnt;
          vector<mod_int> res(need+1);
          res[0] = 1;
          for (int j = 0; j < 10; j++) {
            if (j == mode) continue;
            vector<mod_int> poly;
            for (int jcnt = 0; jcnt+start_count[j] <= (j < mode?mode_cnt + start_count[mode]:mode_cnt + start_count[mode]-1); jcnt++) {
              poly.push_back(inv_factorial(jcnt));
            }
            if (poly.empty()) {
              res[need] = 0;
              break;
            }
            res = poly_mult(res, poly, need+1);
          }
          ans += mode*factorial(digit_count) * res[need] * inv_factorial(mode_cnt);
        }
      }
      if (!can_start_zero) {
        start_count[0]++;
        ans -= self(self, digit_count - 1, start_count, true);
        start_count[0]--;
      }
      return ans;
    };

    mod_int ans =0 ;
    for (int i = 1; i < n.size(); i++) {
      array<int, 10> a = {0};
      ans += F(F, i, a, false);
    }
    
    int curr_dig_cnt = n.size();
    array<int, 10> digcnt = {0};
    for (int i = 0; i < n.size(); i++) {
      curr_dig_cnt--;
      for (int add_dig = (i==0?1:0); add_dig < n[i] - '0'; add_dig++) {
        digcnt[add_dig]++;
        ans += F(F, curr_dig_cnt, digcnt, true);
        digcnt[add_dig]--;
      }
      digcnt[n[i] - '0']++;
    }
    ans += F(F, curr_dig_cnt, digcnt, true);
    cout << ans << '\n';
  }
}
// Solve for f(
// number of digits,
// starting count of each digit
// is a starting zero allowed
// )
//
// This is called O(|n| + 8|n|)ish
// 10 * |n| * 10 (mode value) * |n| (node count) *  |n| * |n| * |n| * 2 (for zero)
// 200 * |n|^4 * log |n|


詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3528kb

input:

5
9
99
999
99999
999999

output:

45
615
6570
597600
5689830

result:

ok 5 number(s): "45 615 6570 597600 5689830"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3756kb

input:

34
7
48
8
76
1
97
7
5
7
7
2
89
9
4
84
46
6
73
86
78
5
3
8
9
31
24
78
7
11
45
2
65
88
6

output:

28
236
36
420
1
597
28
15
28
28
3
525
45
10
484
221
21
399
500
435
15
6
36
45
145
104
435
28
47
215
3
341
516
21

result:

ok 34 numbers

Test #3:

score: 0
Accepted
time: 2ms
memory: 3584kb

input:

16
935
888
429
370
499
881
285
162
178
948
205
858
573
249
773
615

output:

6009
5618
2456
2078
2905
5562
1603
887
993
6121
1174
5378
3333
1374
4724
3631

result:

ok 16 numbers

Test #4:

score: 0
Accepted
time: 3ms
memory: 3528kb

input:

12
1242
9985
6469
9310
4191
9497
3166
3495
9711
9698
4137
2257

output:

7292
63531
37910
58047
23987
59479
18076
19675
61184
61086
23672
12913

result:

ok 12 numbers

Test #5:

score: 0
Accepted
time: 3ms
memory: 3524kb

input:

10
61195
72739
10164
79164
57851
12326
29132
55992
67377
13873

output:

337575
408170
63792
450686
316513
70493
157773
305011
374163
77954

result:

ok 10 numbers

Test #6:

score: 0
Accepted
time: 4ms
memory: 3808kb

input:

8
529983
127270
421121
291729
461233
695056
365028
271160

output:

2744573
687141
2160067
1500426
2359204
3705475
1851172
1381981

result:

ok 8 numbers

Test #7:

score: 0
Accepted
time: 7ms
memory: 3792kb

input:

7
7934351
8474057
1287369
5845624
7796773
5805755
7349121

output:

42465725
45668947
6716401
30094426
41554096
29861098
38756757

result:

ok 7 numbers

Test #8:

score: 0
Accepted
time: 18ms
memory: 3536kb

input:

3
5014252832385738
8762796162648653
919997886706385

output:

892033338
297722019
462512414

result:

ok 3 number(s): "892033338 297722019 462512414"

Test #9:

score: 0
Accepted
time: 47ms
memory: 3524kb

input:

2
775701797726112292362823101
75927988177061355614

output:

371275551
566830847

result:

ok 2 number(s): "371275551 566830847"

Test #10:

score: 0
Accepted
time: 205ms
memory: 3760kb

input:

1
65760982925996012426370962570581226245366145016666

output:

661063035

result:

ok 1 number(s): "661063035"

Test #11:

score: 0
Accepted
time: 214ms
memory: 3608kb

input:

1
62597468169905757754175023836706426691470692832490

output:

9983261

result:

ok 1 number(s): "9983261"

Test #12:

score: 0
Accepted
time: 218ms
memory: 3800kb

input:

1
78912847369504885593964702297317051208901751786824

output:

817123221

result:

ok 1 number(s): "817123221"

Test #13:

score: 0
Accepted
time: 326ms
memory: 3604kb

input:

1
99999999999999999999999999999999999999999999999999

output:

25251932

result:

ok 1 number(s): "25251932"

Test #14:

score: 0
Accepted
time: 233ms
memory: 3544kb

input:

1
999999999999999999999999999999999999999999999

output:

439421821

result:

ok 1 number(s): "439421821"

Test #15:

score: 0
Accepted
time: 162ms
memory: 3532kb

input:

1
9999999999999999999999999999999999999999

output:

387537647

result:

ok 1 number(s): "387537647"

Test #16:

score: 0
Accepted
time: 318ms
memory: 3756kb

input:

1
99999999999999999999999998889999898988888889998888

output:

909431898

result:

ok 1 number(s): "909431898"

Test #17:

score: 0
Accepted
time: 323ms
memory: 3596kb

input:

1
99999999999999999999999998989899988889989889999888

output:

289727470

result:

ok 1 number(s): "289727470"

Test #18:

score: 0
Accepted
time: 321ms
memory: 3536kb

input:

1
99999999999999999999999998998988898888898889898999

output:

962896416

result:

ok 1 number(s): "962896416"

Test #19:

score: 0
Accepted
time: 160ms
memory: 3556kb

input:

1
9999999999999999999989988898888989888899

output:

995903330

result:

ok 1 number(s): "995903330"

Test #20:

score: 0
Accepted
time: 162ms
memory: 3528kb

input:

1
9999999999999999999989999889889998998898

output:

385460258

result:

ok 1 number(s): "385460258"

Test #21:

score: 0
Accepted
time: 325ms
memory: 3756kb

input:

1
99999999999999999999999999999999999999999999999999

output:

25251932

result:

ok 1 number(s): "25251932"