QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#324918 | #8231. Festival Decorating | ucup-team008# | AC ✓ | 4106ms | 62024kb | C++17 | 25.7kb | 2024-02-11 01:38:49 | 2024-10-20 20:02:39 |
Judging History
answer
// {{{ y0105w49 template 22M14
// hi mom
#ifndef NULL
#ifdef __GNUC__
#ifndef __clang__
// #include <bits/stdc++.h>
#include <bits/extc++.h>
#include <tr2/dynamic_bitset>
#define EXTS
#else
#ifdef ARST
#include <bits/clang++.h>
#else
#ifndef _GLIBCXX_NO_ASSERT
#include <cassert>
#endif
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <ciso646>
#include <climits>
#include <clocale>
#include <cmath>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cwchar>
#include <cwctype>
#if __cplusplus >= 201103L
#include <ccomplex>
#include <cfenv>
#include <cinttypes>
// #include <cstdalign>
#include <cstdbool>
#include <cstdint>
#include <ctgmath>
// #include <cuchar>
#endif
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <typeinfo>
#include <utility>
#include <valarray>
#include <vector>
#if __cplusplus >= 201103L
#include <array>
#include <atomic>
#include <chrono>
#include <codecvt>
#include <condition_variable>
#include <forward_list>
#include <future>
#include <initializer_list>
#include <mutex>
#include <random>
#include <ratio>
#include <regex>
#include <scoped_allocator>
#include <system_error>
#include <thread>
#include <tuple>
#include <typeindex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#endif
#if __cplusplus >= 201402L
#include <shared_mutex>
#endif
#if __cplusplus >= 201703L
#include <any>
#include <charconv>
// #include <execution>
#include <filesystem>
#include <optional>
// #include <memory_resource>
#include <string_view>
#include <variant>
#endif
#if __cplusplus >= 202002L
#include <barrier>
#include <bit>
#include <compare>
#include <concepts>
#if __cpp_impl_coroutine
# include <coroutine>
#endif
#include <latch>
#include <numbers>
#include <ranges>
#include <span>
// #include <stop_token>
#include <semaphore>
// #include <source_location>
// #include <syncstream>
#include <version>
#endif
#if __cplusplus > 202002L
// #include <expected>
// #include <spanstream>
#if __has_include(<stacktrace>)
# include <stacktrace>
#endif
#include <stdatomic.h>
#endif
#endif
#endif
#else
#error "unsupported"
#endif
#endif
using namespace std;
#ifdef ARST
#define JO 1
#define OJ 0
#else
#define JO 0
#define OJ 1
#endif
#define STR(x) #x
#define GCCDIAG(s) _Pragma(STR(GCC diagnostic s)) static_assert(true)
#define Wsave GCCDIAG(push)
#define Wpop GCCDIAG(pop)
#define Wsupp(w) GCCDIAG(ignored "-W" w)
#define Wpush(w) Wsave; Wsupp(w)
#define typeof __typeof__
namespace gbd_ns {
template<typename C>
struct is_iterable {
template<class T> static long check(...);
template<class T> static char check(int,typename T::const_iterator = C().end());
enum {
value = sizeof(check<C>(0)) == sizeof(char),
neg_value = sizeof(check<C>(0)) != sizeof(char)
};
};
template<class T> struct _gbd3C;
template<class T> ostream &_gbd3(ostream &os,const T &x) { return _gbd3C<T>::call(os,x); }
template<> ostream &_gbd3(ostream &os,const string &x) { return os<<'"'<<x<<'"'; }
template<> ostream &_gbd3(ostream &os,char *const &x) { return os<<'"'<<x<<'"'; }
template<class T> ostream &_gbd3_5(ostream &os,const T &x) { return _gbd3(os,x); }
template<class A,class B>
ostream &_gbd4(ostream &os,const pair<A,B> &p) {
_gbd3(os<<'(',p.first);
_gbd3(os<<',',p.second);
return os<<')';
}
template<class T,size_t N> struct _gbd4_tupleC {
static void call(ostream &os,const T &t) {
_gbd4_tupleC<T,N-1>::call(os,t);
os<<','<<get<N-1>(t);
}
};
template<class T> struct _gbd4_tupleC<T,1> {
static void call(ostream &os,const T &t) {
os<<get<0>(t);
}
};
template<typename... Types>
ostream &_gbd4(ostream &os,const tuple<Types...> &t) {
os<<'(';
_gbd4_tupleC<tuple<Types...>,sizeof...(Types)>::call(os,t);
return os<<')';
}
template<>
ostream &_gbd4(ostream &os,const tuple<> &t) { (void)t; return os<<"()"; }
template<class T> ostream &_gbd4(ostream &os,const T &x) {
return os<<x;
}
template<class T> struct _gbd3C {
template<class U=T>
static ostream &call(ostream &os,enable_if_t<is_iterable<U>::value,const T> &V) {
os<<"{";
bool ff=0;
for(const auto &E:V) _gbd3_5<decltype(E)>(ff?os<<",":os,E), ff=1;
return os<<"}";
}
template<class U=T>
static ostream &call(ostream &os,enable_if_t<is_iterable<U>::neg_value,const T> &x) {
return _gbd4(os,x);
}
};
template<class T,typename... Args> ostream &_gbd2(ostream &os,bool,vector<string>::iterator nm,const T &x,Args&&... args);
ostream &_gbd2(ostream &os,bool,vector<string>::iterator) { return os; }
template<typename... Args>
ostream &_gbd2(ostream &os,bool fi,vector<string>::iterator nm,const char *x,Args&&... args) {
return _gbd2(os<<(fi?"":" ")<<x,0,nm+1,args...);
}
template<class T,typename... Args>
ostream &_gbd2(ostream &os,bool fi,vector<string>::iterator nm,const T &x,Args&&... args) {
return _gbd2(_gbd3<T>(os<<(fi?"":" ")<<*nm<<"=",x),0,nm+1,args...);
}
vector<string> split(string s) {
vector<string> Z;
string z="";
s+=',';
int dep=0;
for(char c:s) {
if(c==',' && !dep) Z.push_back(z),z="";
else z+=c;
if(c=='(' || c=='{' || c=='[') ++dep;
if(c==')' || c=='}' || c==']') --dep;
}
return Z;
}
template<typename... Args> ostream &_gbd1(ostream &os,const string &nm,Args&&... args) {
return _gbd2(os,1,split(nm).begin(),args...);
}
template<typename... Args> string _gbd1(const string &nm,Args&&... args) {
ostringstream oss;
_gbd2(oss,1,split(nm).begin(),args...);
return oss.str();
}
}
bool DBG=1,EMACS=0;
#define dbg(...) (JO&&DBG?gbd_ns::_gbd1(cerr<<"\033[38;5;5m"<<__FILE__<<":"<<__LINE__<<(EMACS?":note: ":": "),#__VA_ARGS__,__VA_ARGS__)<<"\033[0m"<<endl:cerr)
#define dbgt(...) dbg(fmt_time(),__VA_ARGS__)
#define fmt(...) gbd_ns::_gbd1(#__VA_ARGS__,__VA_ARGS__)
template<class Fun> struct _y_combinator_result {
Fun _fun;
template<class T> explicit _y_combinator_result(T &&fun) : _fun(forward<T>(fun)) {}
template<typename... Args> decltype(auto) operator()(Args &&... args) {
return _fun(ref(*this),forward<Args>(args)...);
}
};
template<class Fun> [[nodiscard]] decltype(auto) fix(Fun &&fun) {
return _y_combinator_result<decay_t<Fun>>(forward<Fun>(fun));
}
#define nop void()
#define sz(x) (int((x).size()))
#define all(v) (v).begin(),(v).end()
#define sortu(v) (sort(all(v)), (v).resize(unique(all(v))-begin(v)))
#define forenum(i,...) for(int i:{-1}) for(__VA_ARGS__) if(++i,0) assert(0); else
#define forenumll(i,...) for(long long i:{-1}) for(__VA_ARGS__) if(++i,0) assert(0); else
#define forbs(k,i,bs) for(ptrdiff_t k=0,i=(bs)._Find_first();i<(ptrdiff_t)(bs).size();i=(bs)._Find_next(i),++k)
#define fordbs(k,i,bs) for(ptrdiff_t k=0,i=(bs).find_first();i<(ptrdiff_t)(bs).size();i=(bs).find_next(i),++k)
#define get(x,i) get<i>(x)
template<class T> bool inb(const T &x,const T &l,const T &r) { return l<=x&&x<=r; }
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#ifdef EXTS
template<class S,class T> using omap=__gnu_pbds::tree<S,T,less<S>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<class T> using oset=omap<T,__gnu_pbds::null_type>;
template<class T> using rope=__gnu_cxx::rope<T>;
using dbitset=tr2::dynamic_bitset<>;
#endif
constexpr int e0=1, e1=10, e2=100, e3=1000;
constexpr int e4=10*e3, e5=100*e3, e6=1000*e3;
constexpr int e7=10*e6, e8=100*e6, e9=1000*e6;
constexpr long long e10=10LL*e9, e11=100LL*e9, e12=1000LL*e9;
constexpr long long e13=10*e12, e14=100*e12, e15=1000*e12;
constexpr long long e16=10*e15, e17=100*e15, e18=1000*e15;
constexpr __int128_t e21=__int128_t(e3)*e18, e24=__int128_t(e6)*e18, e27=__int128_t(e9)*e18;
constexpr __int128_t e30=e3*e27, e33=e6*e27, e36=e9*e27;
using ulll=__uint128_t;
using lll=__int128_t;
using ull=unsigned long long;
using ll=long long;
using ld=long double;
#ifdef EXTS
using lld=__float128;
#endif
long long START_TIME=chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now().time_since_epoch()).count();
inline long long now_U_03BC_s() { return chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now().time_since_epoch()).count()-START_TIME; }
const char *fmt_time(long long U_03BC_s=now_U_03BC_s()) { static char dur[20]; sprintf(dur,"%llu.%03llus",U_03BC_s/e6,(U_03BC_s%e6)/e3); return dur; }
#define timed(cb) do { dbg("timed "#cb" ..."); unsigned long long start=now_U_03BC_s(); cb; dbg("timed "#cb" took",fmt_time(now_U_03BC_s()-start)); } while(0)
int arg1; bool inp; vector<string> args;
unsigned seed=unsigned(JO&&getenv("sd")?atoi(getenv("sd")):OJ?START_TIME:START_TIME%e5);
mt19937 igen(seed<<1),gen(seed<<1|1);
#define irand(...) _rand(igen,__VA_ARGS__)
#define rand(...) _rand(gen,__VA_ARGS__)
template<class T> enable_if_t<numeric_limits<T>::is_integer,T> _rand(mt19937 &g,T l,T r) { return uniform_int_distribution<T>(l,r)(g); }
template<class T> enable_if_t<numeric_limits<T>::is_integer,T> _rand(mt19937 &g,T n) { return _rand(g,T(1),n); }
[[deprecated]] int _rand(mt19937 &g) { return _rand(g,0,numeric_limits<int>::max()); }
template<class T> enable_if_t<numeric_limits<T>::is_iec559,T> _rand(mt19937 &g,T l,T r) { return uniform_real_distribution<T>(l,r)(g); }
bool _rand(mt19937 &g,double p) { return bernoulli_distribution(p)(g); }
template<class T> T _rand(mt19937 &g,initializer_list<T> il) { return *(il.begin()+_rand(g,0,(int)il.size()-1)); }
template<class T> T _rand(mt19937 &g,double p,T a,T b) { return _rand(g,p)?a:b; }
template<class T> T _rand(mt19937 &g,initializer_list<T> il,initializer_list<double> wt) { assert(il.size()==wt.size()); return *(il.begin()+discrete_distribution<int>(wt)(g)); }
#define random_shuffle(...) static_assert(false,"random_shuffle deprecated, use shuffle")
#define ine(x,e) (inp?cin>>(x),nop:((x)=(e),nop))
#define inr(x,...) ine(x,irand(__VA_ARGS__))
#define endl '\n'
string garb;
void exit0() { DBG=1; dbgt("gg (early)"); exit(0); }
#ifndef MAIN
#define MAIN _main
#endif
void MAIN();
int32_t main([[maybe_unused]]int argc,[[maybe_unused]]char *argv[]) {
ios_base::sync_with_stdio(0); cin.tie(0); cin.exceptions(ios_base::failbit | ios_base::badbit);
arg1=0,args={argv,argv+argc};
if(sz(args)>1) {
if(args[1][0]=='i') freopen((string(__FILE__).substr(0,string(__FILE__).find('.'))+"."+args[1].substr(1)+".in").c_str(),"r",stdin);
else if(args[1][0]=='I') freopen(args[1].substr(1).c_str(),"r",stdin);
else arg1=stoi(args[1]);
}
inp=!arg1;
if(JO && getenv("EMACS")) EMACS=1;
dbgt(arg1,seed,args);
#ifdef QUIET
DBG=0;
#endif
MAIN();
DBG=1;
dbgt("gg;wp");
return 0;
}
constexpr int inf=e9+99;
constexpr ll linf=1LL*e9*e9+99;
#if __cplusplus >= 202002L
constexpr long double U_03C4__ld=2*numbers::pi_v<long double>;
#else
const long double U_03C4__ld=2*acosl(-1);
#endif
#define U_03C4_ ((flt)U_03C4__ld)
constexpr long double U_03B5__ld=1e-8l;
#define U_03B5_ ((flt)U_03B5__ld)
// }}}
using flt=double; //CARE
constexpr int P=998'244'353;
template<typename float_t>
struct fast_complex {
// credit to neal
float_t x, y;
fast_complex<float_t>(float_t _x = 0, float_t _y = 0) : x(_x), y(_y) {}
float_t real() const {
return x;
}
void real(float_t _x) {
x = _x;
}
float_t imag() const {
return y;
}
void imag(float_t _y) {
y = _y;
}
fast_complex<float_t>& operator+=(const fast_complex<float_t> &other) {
x += other.x;
y += other.y;
return *this;
}
fast_complex<float_t>& operator-=(const fast_complex<float_t> &other) {
x -= other.x;
y -= other.y;
return *this;
}
fast_complex<float_t> operator+(const fast_complex<float_t> &other) const {
return fast_complex<float_t>(*this) += other;
}
fast_complex<float_t> operator-(const fast_complex<float_t> &other) const {
return fast_complex<float_t>(*this) -= other;
}
fast_complex<float_t> operator*(const fast_complex<float_t> &other) const {
return {x * other.x - y * other.y, x * other.y + other.x * y};
}
};
template<typename float_t>
fast_complex<float_t> fast_conj(const fast_complex<float_t> &c) {
return {c.x, -c.y};
}
template<typename float_t>
fast_complex<float_t> fast_polar(float_t magnitude, float_t angle) {
return {magnitude * cos(angle), magnitude * sin(angle)};
}
template<typename float_t>
ostream& operator<<(ostream &stream, const fast_complex<float_t> &c) {
return stream << '(' << c.x << ", " << c.y << ')';
}
namespace FFT {
typedef double float_t;
const float_t ONE = 1;
const float_t PI = acos(-ONE);
vector<fast_complex<float_t>> roots;
vector<int> bit_reverse;
bool is_power_of_two(int n) {
return (n & (n - 1)) == 0;
}
int round_up_power_two(int n) {
assert(n > 0);
while (n & (n - 1))
n = (n | (n - 1)) + 1;
return n;
}
// Given n (a power of two), finds k such that n == 1 << k.
int get_length(int n) {
assert(is_power_of_two(n));
return __builtin_ctz(n);
}
// Rearranges the indices to be sorted by lowest bit first, then second lowest, etc., rather than highest bit first.
// This makes even-odd div-conquer much easier.
template<typename fast_complex_array>
void bit_reorder(int n, fast_complex_array &&values) {
if ((int) bit_reverse.size() != n) {
bit_reverse.assign(n, 0);
int length = get_length(n);
for (int i = 0; i < n; i++)
bit_reverse[i] = (bit_reverse[i >> 1] >> 1) + ((i & 1) << (length - 1));
}
for (int i = 0; i < n; i++)
if (i < bit_reverse[i])
swap(values[i], values[bit_reverse[i]]);
}
void prepare_roots(int n) {
if ((int) roots.size() >= n)
return;
if (roots.empty())
roots = {{0, 0}, {1, 0}};
int length = get_length(roots.size());
roots.resize(n);
// The roots array is set up such that for a given power of two n >= 2, roots[n / 2] through roots[n - 1] are
// the first half of the n-th roots of unity.
while (1 << length < n) {
double min_angle = 2 * PI / (1 << (length + 1));
for (int i = 0; i < 1 << (length - 1); i++) {
int index = (1 << (length - 1)) + i;
roots[2 * index] = roots[index];
roots[2 * index + 1] = fast_polar(ONE, min_angle * (2 * i + 1));
}
length++;
}
}
template<typename fast_complex_array>
void fft_recursive(int n, fast_complex_array &&values, int depth = 0) {
if (n <= 1)
return;
if (depth == 0) {
assert(is_power_of_two(n));
prepare_roots(n);
bit_reorder(n, values);
}
n /= 2;
fft_recursive(n, values, depth + 1);
fft_recursive(n, values + n, depth + 1);
for (int i = 0; i < n; i++) {
const fast_complex<float_t> &even = values[i];
fast_complex<float_t> odd = values[n + i] * roots[n + i];
values[n + i] = even - odd;
values[i] = even + odd;
}
}
// Iterative version of fft_recursive above.
template<typename fast_complex_array>
void fft_iterative(int N, fast_complex_array &&values) {
assert(is_power_of_two(N));
prepare_roots(N);
bit_reorder(N, values);
for (int n = 1; n < N; n *= 2)
for (int start = 0; start < N; start += 2 * n)
for (int i = 0; i < n; i++) {
const fast_complex<float_t> &even = values[start + i];
fast_complex<float_t> odd = values[start + n + i] * roots[n + i];
values[start + n + i] = even - odd;
values[start + i] = even + odd;
}
}
inline fast_complex<float_t> extract(int N, const vector<fast_complex<float_t>> &values, int index, int side) {
if (side == -1) {
// Return the product of 0 and 1.
int other = (N - index) & (N - 1);
return (fast_conj(values[other] * values[other]) - values[index] * values[index]) * fast_complex<float_t>(0, 0.25);
}
int other = (N - index) & (N - 1);
int sign = side == 0 ? +1 : -1;
fast_complex<float_t> multiplier = side == 0 ? fast_complex<float_t>(0.5, 0) : fast_complex<float_t>(0, -0.5);
return multiplier * fast_complex<float_t>(values[index].real() + values[other].real() * sign,
values[index].imag() - values[other].imag() * sign);
}
void invert_fft(int N, vector<fast_complex<float_t>> &values) {
assert(N >= 2);
for (int i = 0; i < N; i++)
values[i] = fast_conj(values[i]) * (ONE / N);
for (int i = 0; i < N / 2; i++) {
fast_complex<float_t> first = values[i] + values[N / 2 + i];
fast_complex<float_t> second = (values[i] - values[N / 2 + i]) * roots[N / 2 + i];
values[i] = first + second * fast_complex<float_t>(0, 1);
}
fft_recursive(N / 2, values.begin());
for (int i = N - 1; i >= 0; i--)
values[i] = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
}
const int FFT_CUTOFF = 150;
const double SPLIT_CUTOFF = 2e15;
const int SPLIT_BASE = 1 << 15;
template<typename T_out, typename T_in>
vector<T_out> square(const vector<T_in> &input) {
int n = input.size();
// Brute force when n is small enough.
if (n < 1.5 * FFT_CUTOFF) {
vector<T_out> result(2 * n - 1);
for (int i = 0; i < n; i++) {
result[2 * i] += (T_out) input[i] * input[i];
for (int j = i + 1; j < n; j++)
result[i + j] += (T_out) 2 * input[i] * input[j];
}
return result;
}
int N = round_up_power_two(n);
assert(N >= 2);
prepare_roots(2 * N);
vector<fast_complex<float_t>> values(N, 0);
for (int i = 0; i < n; i += 2)
values[i / 2] = fast_complex<float_t>(input[i], i + 1 < n ? input[i + 1] : 0);
fft_iterative(N, values.begin());
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
fast_complex<float_t> even = extract(N, values, i, 0);
fast_complex<float_t> odd = extract(N, values, i, 1);
fast_complex<float_t> aux = even * even + odd * odd * roots[N + i] * roots[N + i];
fast_complex<float_t> tmp = even * odd;
values[i] = aux - fast_complex<float_t>(0, 2) * tmp;
values[j] = fast_conj(aux) - fast_complex<float_t>(0, 2) * fast_conj(tmp);
}
for (int i = 0; i < N; i++)
values[i] = fast_conj(values[i]) * (ONE / N);
fft_recursive(N, values.begin());
vector<T_out> result(2 * n - 1);
for (int i = 0; i < (int) result.size(); i++) {
float_t value = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
result[i] = is_integral<T_out>::value ? round(value) : value;
}
return result;
}
template<typename T_out, typename T_in>
vector<T_out> multiply(const vector<T_in> &left, const vector<T_in> &right) {
if (left == right)
return square<T_out>(left);
int n = left.size();
int m = right.size();
// Brute force when either n or m is small enough.
if (min(n, m) < FFT_CUTOFF) {
vector<T_out> result(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
result[i + j] += (T_out) left[i] * right[j];
return result;
}
int N = round_up_power_two(n + m - 1);
vector<fast_complex<float_t>> values(N, 0);
for (int i = 0; i < n; i++)
values[i].real(left[i]);
for (int i = 0; i < m; i++)
values[i].imag(right[i]);
fft_iterative(N, values.begin());
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
fast_complex<float_t> product_i = extract(N, values, i, -1);
values[i] = product_i;
values[j] = fast_conj(product_i);
}
invert_fft(N, values);
vector<T_out> result(n + m - 1);
for (int i = 0; i < (int) result.size(); i++)
result[i] = is_integral<T_out>::value ? round(values[i].real()) : values[i].real();
return result;
}
template<typename T>
vector<T> mod_multiply(const vector<T> &left, const vector<T> &right, T mod, bool split = false) {
int n = left.size();
int m = right.size();
for (int i = 0; i < n; i++)
assert(0 <= left[i] && left[i] < mod);
for (int i = 0; i < m; i++)
assert(0 <= right[i] && right[i] < mod);
// Brute force when either n or m is small enough. Brute force up to higher values when split = true.
if (min(n, m) < (split ? 2 : 1) * FFT_CUTOFF) {
const uint64_t ULL_BOUND = numeric_limits<uint64_t>::max() - (uint64_t) mod * mod;
vector<uint64_t> result(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
result[i + j] += (uint64_t) left[i] * right[j];
if (result[i + j] > ULL_BOUND)
result[i + j] %= mod;
}
for (int i = 0; i < (int) result.size(); i++)
if (result[i] >= (uint64_t) mod)
result[i] %= mod;
return vector<T>(result.begin(), result.end());
}
if (!split) {
const vector<uint64_t> &product = multiply<uint64_t>(left, right);
vector<T> result(n + m - 1);
for (int i = 0; i < (int) result.size(); i++)
result[i] = product[i] % mod;
return result;
}
int N = round_up_power_two(n + m - 1);
vector<fast_complex<float_t>> left_fft(N, 0), right_fft(N, 0);
for (int i = 0; i < n; i++) {
left_fft[i].real(left[i] % SPLIT_BASE);
left_fft[i].imag(left[i] / SPLIT_BASE);
}
fft_iterative(N, left_fft.begin());
if (left == right) {
copy(left_fft.begin(), left_fft.end(), right_fft.begin());
} else {
for (int i = 0; i < m; i++) {
right_fft[i].real(right[i] % SPLIT_BASE);
right_fft[i].imag(right[i] / SPLIT_BASE);
}
fft_iterative(N, right_fft.begin());
}
vector<fast_complex<float_t>> product(N);
vector<T> result(n + m - 1);
for (int exponent = 0; exponent <= 2; exponent++) {
uint64_t multiplier = 1;
for (int k = 0; k < exponent; k++)
multiplier = multiplier * SPLIT_BASE % mod;
fill(product.begin(), product.end(), 0);
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
if (x + y == exponent)
for (int i = 0; i < N; i++)
product[i] += extract(N, left_fft, i, x) * extract(N, right_fft, i, y);
invert_fft(N, product);
for (int i = 0; i < (int) result.size(); i++) {
uint64_t value = round(product[i].real());
result[i] = (result[i] + value % mod * multiplier) % mod;
}
}
return result;
}
};
// FFT::mod_multiply(vector_a, vector_b, THE_PRIME, true)
int powq(int x,int e) {
int z=1;
for(;e;e>>=1,x=int(1LL*x*x%P)) if(e&1) z=int(1LL*z*x%P);
return z;
}
void add(int &x,int y) { if((x+=y)>=P) x-=P; }
void _main() { /* CURSOR START */
int n,q; ine(n,arg1), ine(q,arg1+7);
const int N=1<<18;
static int x[N],c[N];
for(int i=1;i<=n;i++) inr(x[i],250*e3), inr(c[i],n);
dbg(FFT::mod_multiply(vector{1,2},vector{1,3},P,true));
dbg(FFT::mod_multiply(vector{1,e9%P},vector{1,e9%P},P,true));
dbg(e18%P);
const int C=3;
static vector<int> lhs[C];
static vector<int> rhs[C];
for(int i=0;i<C;i++) lhs[i].resize(N,0), rhs[i].resize(N,0);
static int X[C][N];
static int Y[C][N];
for(int j=0;j<C;j++) for(int i=1;i<=n;i++) X[j][i]=rand(P-1), Y[j][i]=powq(X[j][i],P-2);
for(int i=1;i<=n;i++) for(int j=0;j<C;j++) add(rhs[j][N-x[i]],Y[j][c[i]]);
static int z[N];
for(int l=1;l<N;l*=3,++l) {
int r=min(l*3,n);
for(int i=l;i<=r;i++) for(int j=0;j<C;j++) add(lhs[j][x[i]],X[j][c[i]]);
static vector<int> zhs[C];
for(int j=0;j<C;j++) zhs[j]=FFT::mod_multiply(lhs[j],rhs[j],P,true);
dbg(l,r);
// for(int j=0;j<C;j++) dbg(zhs[j]);
for(int i=0;i<N;i++) {
if(z[i]) continue;
for(int j=0;j<C;j++) if(zhs[0][N-i]!=zhs[j][N-i]) z[i]=r;
}
}
for(;q--;) {
int x; inr(x,250*e3);
cout<<z[x]/2;
if(z[x]%2) cout<<".5";
cout<<endl;
}
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 3312ms
memory: 58800kb
input:
4 5 3 1 1 2 5 1 6 2 1 2 3 4 5
output:
1.5 1.5 1.5 1.5 0
result:
ok 5 numbers
Test #2:
score: 0
Accepted
time: 3348ms
memory: 61340kb
input:
10000 99999 67296 2 19835 1 93435 1 12756 2 38971 2 58322 2 4419 1 58583 1 68865 1 14192 1 66909 1 31419 2 40656 2 60289 2 79053 1 82880 1 28930 2 46115 1 9805 1 45096 2 29874 1 37171 2 55385 2 69812 1 16845 2 36030 2 58316 1 53401 1 35239 1 40363 1 29811 2 46440 2 98911 1 86466 2 9707 1 41909 2 616...
output:
60 60 19.5 60 60 6 1.5 19.5 19.5 1.5 1.5 19.5 19.5 60 6 6 19.5 6 60 1.5 60 1.5 1.5 6 19.5 6 6 19.5 19.5 60 19.5 60 6 6 6 1.5 19.5 6 19.5 60 19.5 6 19.5 6 6 6 6 1.5 19.5 6 19.5 6 19.5 19.5 19.5 19.5 6 60 60 19.5 19.5 19.5 19.5 19.5 19.5 1.5 6 6 19.5 19.5 19.5 1.5 60 6 60 19.5 60 19.5 19.5 6 19.5 1.5 ...
result:
ok 99999 numbers
Test #3:
score: 0
Accepted
time: 3446ms
memory: 61192kb
input:
30000 99999 51883 1 2142 1 69096 2 63011 1 70418 2 56529 1 65292 2 28901 2 78364 1 96477 1 43396 2 84388 1 29343 2 41141 2 94692 1 91222 1 30872 2 17288 2 11547 1 81095 2 16542 1 38652 1 54120 2 83684 2 70599 1 55085 1 91457 1 37800 1 46297 1 81164 1 79807 2 58484 1 43670 1 7180 2 58437 1 96924 2 63...
output:
1.5 1.5 1.5 19.5 6 6 19.5 6 1.5 6 1.5 6 6 6 19.5 1.5 6 1.5 6 1.5 1.5 1.5 19.5 6 6 1.5 6 1.5 1.5 1.5 6 6 1.5 1.5 19.5 6 19.5 6 1.5 6 1.5 1.5 6 6 6 6 1.5 6 1.5 1.5 6 6 19.5 1.5 6 6 1.5 6 6 1.5 19.5 19.5 6 6 1.5 1.5 6 19.5 6 1.5 1.5 1.5 6 19.5 1.5 1.5 1.5 6 6 19.5 6 6 6 19.5 6 6 1.5 6 6 1.5 1.5 6 19.5 ...
result:
ok 99999 numbers
Test #4:
score: 0
Accepted
time: 3449ms
memory: 60596kb
input:
100000 249999 101558 1 226768 2 215012 1 223802 2 3723 1 154951 1 95152 1 188191 2 128933 2 30706 1 141077 1 8377 2 160084 2 56011 1 11556 1 233668 2 42420 2 78212 1 245580 1 25824 2 61180 1 178193 2 179736 1 25607 2 160052 2 56056 2 93163 1 206849 2 28049 2 120634 2 44385 1 188594 1 195761 2 143744...
output:
6 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 6 1.5 6 1.5 6 19.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 19.5 19.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 6 6 6 1.5 1.5 6 6 1.5 6 1.5 6 6 6 19.5 6 1.5 6 1.5 6 1.5 6 6 1.5 1.5 6 1.5 6 6 19.5 6 6 1.5 1.5 6 6 1.5 1.5 6 1.5 6 1.5 6 1.5 6 6 6 6 1.5 1.5 6 1.5 6 1.5 1.5 6 1.5 6 1.5 1.5 6 1.5...
result:
ok 249999 numbers
Test #5:
score: 0
Accepted
time: 3464ms
memory: 61556kb
input:
150000 249999 29678 2 204012 1 242341 1 55873 2 133195 1 191930 2 158651 2 118376 2 166685 2 52303 2 77713 1 201614 2 135192 2 195257 1 42453 1 42856 1 205245 1 86911 2 192969 1 30106 1 78525 2 140326 2 144700 1 42186 1 215224 2 19113 2 160246 1 159685 1 10602 1 137178 1 102450 1 137587 2 171123 2 1...
output:
1.5 6 1.5 1.5 1.5 1.5 6 6 6 6 1.5 1.5 1.5 1.5 6 1.5 1.5 6 6 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 6 1.5 6 1.5 1.5 6 6 6 1.5 1.5 6 6 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 19.5 1.5 1.5 6 6 6 1.5 6 1.5 6 6 1.5 1.5 1.5 1.5 6 6 6 1.5 6 1.5 1.5 1.5 6 1.5 6 6 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5...
result:
ok 249999 numbers
Test #6:
score: 0
Accepted
time: 3608ms
memory: 61752kb
input:
200000 249999 6248 1 183259 1 153451 2 85616 1 114994 2 98565 1 151656 1 220307 1 178381 2 11378 2 229267 2 229745 2 121994 2 127081 1 49355 1 227953 2 110071 1 227824 1 18185 2 140762 2 98797 1 3337 1 229512 2 31126 2 180753 1 206940 1 130823 2 115947 2 201783 1 113674 2 155525 2 112976 2 66144 1 1...
output:
1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #7:
score: 0
Accepted
time: 3562ms
memory: 61852kb
input:
250000 249999 43395 2 176047 2 182604 2 174584 1 84087 1 171284 2 62939 2 167394 1 91843 1 6316 1 172364 1 60476 1 137969 2 164958 1 49683 2 230414 1 106627 1 120532 1 245073 2 179049 2 34146 2 88698 1 150706 1 99450 1 241792 2 70708 1 69060 2 175739 1 38005 2 65970 1 66335 2 182109 1 32837 1 71265 ...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #8:
score: 0
Accepted
time: 3404ms
memory: 61224kb
input:
100000 249999 15193 3 145839 3 79432 1 108888 2 236993 3 238864 2 96951 2 249086 3 46743 1 32398 3 138017 3 52120 2 230778 2 21656 3 62564 3 208611 2 108357 1 235637 2 247827 1 247624 2 128781 2 13021 1 55702 2 43874 1 126878 2 177432 3 30826 3 100406 3 7564 1 201946 2 52522 3 249872 1 79661 3 13976...
output:
6 6 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 6 6 6 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 19.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 6 6 1.5 1.5 6 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 19.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 6 6 6 6 1.5 1.5 1.5 6 ...
result:
ok 249999 numbers
Test #9:
score: 0
Accepted
time: 3927ms
memory: 61356kb
input:
150000 249999 151797 3 132264 2 228119 2 62624 3 122655 1 93048 2 120758 3 96298 1 127189 3 79578 1 233029 1 166678 2 73775 2 132317 2 51322 1 6343 1 176933 2 106261 1 36493 2 159428 3 112870 3 117448 3 93008 1 154295 2 190828 2 74969 1 240852 1 46624 2 241429 3 65645 1 212721 2 110548 2 118236 2 20...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 6 6 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 6 1.5 6 6 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #10:
score: 0
Accepted
time: 3634ms
memory: 61548kb
input:
200000 249999 47041 3 73295 1 221000 1 53265 2 201031 3 222816 2 231867 2 175711 2 150407 1 172427 1 241001 2 192843 2 13671 1 231028 3 208391 2 171533 2 166545 2 97954 3 192317 2 208872 1 231857 1 113741 1 219000 1 192008 3 112701 1 244639 3 224948 1 13585 2 184997 1 179230 3 149300 1 169950 1 9416...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 ...
result:
ok 249999 numbers
Test #11:
score: 0
Accepted
time: 3532ms
memory: 61880kb
input:
250000 249999 18119 2 48006 3 232814 2 214885 3 10886 3 761 1 28565 2 127342 3 100481 2 91912 2 169408 3 198992 3 32749 2 20324 3 32474 1 38005 2 240939 2 215900 2 200682 1 432 1 5669 3 84940 3 56161 1 203677 1 241950 1 113041 1 138836 3 153159 3 81938 1 61416 3 239183 2 180390 3 83045 3 107312 1 22...
output:
1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #12:
score: 0
Accepted
time: 3477ms
memory: 61372kb
input:
100000 249999 224336 2 97421 4 237741 10 33517 3 217556 5 236052 6 13864 5 189562 1 209432 1 150833 7 94408 10 220716 3 83847 9 61678 7 95666 3 36542 1 162104 1 158517 6 33248 8 43402 1 18134 8 112042 9 202559 9 183144 6 24872 6 27758 7 217309 8 73017 1 59520 9 187721 10 100252 6 138484 7 165554 7 1...
output:
6 6 6 1.5 1.5 6 1.5 1.5 6 1.5 1.5 6 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 6 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 6 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 6 6 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 19.5...
result:
ok 249999 numbers
Test #13:
score: 0
Accepted
time: 3509ms
memory: 61096kb
input:
150000 249999 166792 6 238330 4 84379 10 131925 6 168914 7 96461 6 127762 9 204071 4 243519 8 198906 6 161831 7 131281 8 115061 10 69493 4 208817 9 4190 10 195480 10 51511 6 80200 5 81104 6 131338 8 100895 2 207427 4 237681 3 206143 4 224139 6 17948 8 228982 10 200256 8 36233 9 146742 6 162442 2 165...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #14:
score: 0
Accepted
time: 3560ms
memory: 61800kb
input:
200000 249999 200627 8 155259 8 116629 3 7460 8 212178 2 236426 2 247999 4 58552 9 226174 3 136423 3 68187 1 223717 1 115991 3 96943 9 99300 3 196487 3 82852 9 21321 8 146283 2 173037 8 22904 7 198079 10 22919 1 95543 6 237838 2 248787 7 186160 8 201677 8 44573 7 55166 3 60479 6 247478 2 247081 10 3...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #15:
score: 0
Accepted
time: 3604ms
memory: 61804kb
input:
250000 249999 14095 6 220950 6 234662 3 35913 1 132258 4 200544 10 135104 7 148916 1 13117 5 190176 9 222898 8 91946 4 178090 4 18354 1 151369 2 12233 6 228757 6 161742 7 33667 9 79810 1 74379 10 162789 3 196843 7 223296 9 78881 10 103789 5 84979 7 234254 5 80219 2 27415 7 65636 6 245431 4 16975 7 2...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #16:
score: 0
Accepted
time: 3594ms
memory: 61004kb
input:
250000 249999 234423 1 106490 1 209289 1 86924 1 54501 1 166355 1 228761 1 165944 1 172158 1 64661 1 167348 1 196763 1 98465 1 56621 1 138329 1 149908 1 58448 1 231726 1 171821 1 203962 1 80624 1 299 1 16257 1 193382 1 226372 1 103199 1 160198 1 206884 1 43643 1 246448 1 197980 1 164317 1 228968 1 1...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 249999 numbers
Test #17:
score: 0
Accepted
time: 3600ms
memory: 60632kb
input:
100000 249999 93220 59 126118 58 114760 31 127602 91 78964 37 107468 28 17418 34 20051 6 25078 32 238158 11 143557 45 177110 45 101603 44 55221 8 27168 33 12698 44 96309 71 228393 7 85535 53 161888 73 97093 73 177327 72 151564 44 113400 33 80491 47 62362 93 15475 4 134593 67 204219 69 128232 67 1335...
output:
1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 ...
result:
ok 249999 numbers
Test #18:
score: 0
Accepted
time: 3624ms
memory: 60924kb
input:
150000 249999 104484 72 183971 17 236903 47 85763 51 109721 7 115135 100 162866 62 13428 6 134736 85 108324 46 94466 1 175154 17 72231 54 166036 34 198137 84 146960 74 90976 26 210020 89 205699 80 7068 76 192964 51 93065 27 166315 35 80521 64 41842 13 83346 79 119551 5 96204 72 97493 66 92835 15 312...
output:
1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 ...
result:
ok 249999 numbers
Test #19:
score: 0
Accepted
time: 3659ms
memory: 61820kb
input:
200000 249999 47102 39 120564 49 211340 98 112018 76 128324 79 13658 56 145481 5 212577 92 153372 83 195457 13 67116 53 183188 95 159717 50 223315 42 123415 47 143994 74 39260 51 58850 22 198700 27 22129 53 244348 12 112600 33 93161 52 165358 80 162648 46 238139 8 224484 6 236710 2 45342 99 44056 3 ...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #20:
score: 0
Accepted
time: 3651ms
memory: 61740kb
input:
250000 249999 113549 52 245740 8 25655 22 218082 47 132245 45 218861 28 37315 30 111164 95 14826 36 107398 37 156792 14 48628 66 132434 72 28151 59 158589 94 7348 97 56728 5 190552 8 170423 55 65115 44 106177 86 202419 88 183685 47 200452 7 72434 8 161099 94 95797 19 92937 7 75848 100 238323 38 1721...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #21:
score: 0
Accepted
time: 3476ms
memory: 61060kb
input:
100000 249999 215178 78 137308 320 85918 996 37671 196 229886 523 231932 923 231942 388 174478 949 3670 606 187312 514 113705 684 239037 255 207483 436 54280 528 227569 162 29778 206 139135 341 39789 362 191291 41 102694 729 208895 941 57449 360 30418 630 123629 754 39958 20 220635 888 43818 148 531...
output:
1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 6 6 1.5 6 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #22:
score: 0
Accepted
time: 3523ms
memory: 61276kb
input:
150000 249999 168799 574 236614 391 5626 61 80977 154 38826 825 210532 62 100484 431 137419 781 103555 171 155556 287 247529 26 33559 487 177031 92 195197 875 91976 329 199343 636 83803 545 106072 247 123800 617 25942 788 235116 540 75666 678 240796 87 116602 682 229461 207 234450 428 235548 279 159...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #23:
score: 0
Accepted
time: 3514ms
memory: 61412kb
input:
200000 249999 220479 940 50222 148 184880 27 222833 69 4952 631 43460 820 140864 16 15536 585 121758 416 81558 785 139693 320 164815 379 6191 763 223454 81 202200 271 68519 74 25162 498 51853 454 170830 650 123228 426 131945 392 191834 517 152172 502 117499 506 103682 415 245558 424 146040 951 87752...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #24:
score: 0
Accepted
time: 3523ms
memory: 61544kb
input:
250000 249999 71099 140 102518 514 183279 196 9460 731 155766 741 159169 471 240491 548 72124 713 92079 572 102680 262 27525 958 1818 610 245646 611 85560 428 14629 438 195435 311 30920 702 105014 531 9136 11 134312 381 88919 991 56603 642 102308 551 68202 138 12583 498 88565 667 69470 82 213748 540...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #25:
score: 0
Accepted
time: 3573ms
memory: 60716kb
input:
100000 249999 143875 3079 35794 9717 78870 1826 154059 3784 185253 1989 50422 6248 142560 6933 142367 7270 199873 8171 232637 2149 766 6740 128174 8273 174253 2020 71559 974 33140 3168 247328 4196 235516 7852 118076 6395 165442 1875 15428 8418 143016 5686 122930 6 97686 6807 215402 719 152923 7495 1...
output:
1.5 6 1.5 6 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 6 6 6 6 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 6 1.5 6 6 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #26:
score: 0
Accepted
time: 3636ms
memory: 61524kb
input:
150000 249999 208515 1037 226810 8037 78579 8990 196348 454 52075 3057 210394 7076 132508 6037 33903 3827 45161 3699 181439 3102 81472 8711 241071 8091 177966 9734 10995 5634 142541 4395 150681 2847 64108 3634 236691 6727 44362 3578 91381 3400 115765 7253 95492 6997 86886 4546 137861 3681 89217 9885...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #27:
score: 0
Accepted
time: 3654ms
memory: 61600kb
input:
200000 249999 19515 6770 260 7289 46752 6511 235290 1326 69396 2617 218263 711 68770 3615 160983 5021 74125 2662 245771 8858 224783 7181 235656 4986 163114 3041 101632 1797 64682 4595 22763 4476 145956 9767 50440 3970 20831 9646 32979 365 147294 5959 5700 3518 167684 258 105791 2718 129850 8902 2168...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #28:
score: 0
Accepted
time: 3719ms
memory: 61800kb
input:
250000 249999 233586 2024 249814 5609 98965 9482 21269 7996 112196 3685 56401 4243 248656 5822 246725 8874 239803 3997 154988 7106 163971 9153 17019 4804 114980 9267 15470 7944 148695 5822 48302 5830 17357 1357 85078 1597 217000 5941 193654 6835 41788 6310 84917 509 111123 2589 219424 5680 217784 85...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #29:
score: 0
Accepted
time: 3563ms
memory: 61288kb
input:
100000 249999 218060 20345 27334 62482 125176 75231 164701 51166 191015 8172 197002 40902 212572 96076 79429 83748 8322 65763 117710 55688 163851 18354 61106 26868 169159 5528 85864 73608 229644 69531 69326 96862 136553 87015 41717 8087 3709 40727 233990 84886 99712 32178 217040 75596 149456 83736 1...
output:
1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 6 1.5 1.5 1.5 1.5 6 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 6 1.5 ...
result:
ok 249999 numbers
Test #30:
score: 0
Accepted
time: 3545ms
memory: 60992kb
input:
150000 249999 234931 117721 165760 121374 39901 90389 65401 36642 127661 143888 111190 11903 248547 55018 25670 51452 29737 77284 34785 88158 41023 86741 210736 96409 45042 131729 156818 38710 102234 58616 229573 45925 240495 63260 27301 13493 239464 120694 57130 18370 65373 113177 200234 111599 813...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1....
result:
ok 249999 numbers
Test #31:
score: 0
Accepted
time: 3605ms
memory: 61960kb
input:
200000 249999 115119 166519 203638 63359 136662 96182 198943 18205 186741 173012 170532 142299 132543 22820 152237 171263 248127 46558 134531 159448 113450 155775 26555 131466 9868 37421 45419 144841 199395 140829 110924 34275 83572 11001 48496 65156 133341 100284 141543 60021 170546 6240 231712 152...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #32:
score: 0
Accepted
time: 3601ms
memory: 61872kb
input:
250000 249999 81716 70790 72006 29146 86672 228636 88825 53682 198298 58728 197705 130597 169560 249058 143240 6263 156637 225375 177754 174622 67575 6866 139636 192494 53704 155110 8984 209943 65297 79914 153405 142122 225695 169949 96758 194754 245965 121739 212635 243505 234106 28727 242548 11416...
output:
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
result:
ok 249999 numbers
Test #33:
score: 0
Accepted
time: 3554ms
memory: 61836kb
input:
250000 249999 250000 1 249999 1 249998 2 249997 2 249996 3 249995 3 249994 4 249993 4 249992 5 249991 5 249990 6 249989 6 249988 7 249987 7 249986 8 249985 8 249984 9 249983 9 249982 10 249981 10 249980 11 249979 11 249978 12 249977 12 249976 13 249975 13 249974 14 249973 14 249972 15 249971 15 2499...
output:
1.5 1.5 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 6...
result:
ok 249999 numbers
Test #34:
score: 0
Accepted
time: 3536ms
memory: 61680kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 2 249996 2 249995 2 249994 3 249993 3 249992 3 249991 4 249990 4 249989 4 249988 5 249987 5 249986 5 249985 6 249984 6 249983 6 249982 7 249981 7 249980 7 249979 8 249978 8 249977 8 249976 9 249975 9 249974 9 249973 10 249972 10 249971 10 249970 11 249...
output:
6 6 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60...
result:
ok 249999 numbers
Test #35:
score: 0
Accepted
time: 3470ms
memory: 61932kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 2 249994 2 249993 2 249992 2 249991 2 249990 3 249989 3 249988 3 249987 3 249986 3 249985 4 249984 4 249983 4 249982 4 249981 4 249980 5 249979 5 249978 5 249977 5 249976 5 249975 6 249974 6 249973 6 249972 6 249971 6 249970 7 249969 ...
output:
6 6 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60...
result:
ok 249999 numbers
Test #36:
score: 0
Accepted
time: 3485ms
memory: 61788kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 ...
result:
ok 249999 numbers
Test #37:
score: 0
Accepted
time: 3553ms
memory: 61656kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 ...
result:
ok 249999 numbers
Test #38:
score: 0
Accepted
time: 4106ms
memory: 61724kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 ...
result:
ok 249999 numbers
Test #39:
score: 0
Accepted
time: 3588ms
memory: 61868kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 ...
result:
ok 249999 numbers
Test #40:
score: 0
Accepted
time: 3502ms
memory: 61836kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000...
result:
ok 249999 numbers
Test #41:
score: 0
Accepted
time: 3398ms
memory: 61268kb
input:
100000 250000 100000 1 99999 1 99998 1 99997 1 99996 1 99995 1 99994 1 99993 1 99992 1 99991 1 99990 1 99989 1 99988 1 99987 1 99986 1 99985 1 99984 1 99983 1 99982 1 99981 1 99980 1 99979 1 99978 1 99977 1 99976 1 99975 1 99974 1 99973 1 99972 1 99971 1 99970 1 99969 1 99968 1 99967 1 99966 1 99965...
output:
14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 14761.5 1476...
result:
ok 250000 numbers
Test #42:
score: 0
Accepted
time: 3541ms
memory: 61812kb
input:
250000 249999 250000 1 249999 1 249998 2 249997 2 249996 3 249995 3 249994 4 249993 4 249992 5 249991 5 249990 6 249989 6 249988 7 249987 7 249986 8 249985 8 249984 9 249983 9 249982 10 249981 10 249980 11 249979 11 249978 12 249977 12 249976 13 249975 13 249974 14 249973 14 249972 15 249971 15 2499...
output:
1.5 1.5 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 6...
result:
ok 249999 numbers
Test #43:
score: 0
Accepted
time: 3563ms
memory: 61820kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 2 249996 2 249995 2 249994 3 249993 3 249992 3 249991 4 249990 4 249989 4 249988 5 249987 5 249986 5 249985 6 249984 6 249983 6 249982 7 249981 7 249980 7 249979 8 249978 8 249977 8 249976 9 249975 9 249974 9 249973 10 249972 10 249971 10 249970 11 249...
output:
6 6 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60...
result:
ok 249999 numbers
Test #44:
score: 0
Accepted
time: 3593ms
memory: 61616kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 2 249994 2 249993 2 249992 2 249991 2 249990 3 249989 3 249988 3 249987 3 249986 3 249985 4 249984 4 249983 4 249982 4 249981 4 249980 5 249979 5 249978 5 249977 5 249976 5 249975 6 249974 6 249973 6 249972 6 249971 6 249970 7 249969 ...
output:
6 6 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60...
result:
ok 249999 numbers
Test #45:
score: 0
Accepted
time: 3584ms
memory: 61752kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 ...
result:
ok 249999 numbers
Test #46:
score: 0
Accepted
time: 3422ms
memory: 61772kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 ...
result:
ok 249999 numbers
Test #47:
score: 0
Accepted
time: 3433ms
memory: 61904kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 4920 ...
result:
ok 249999 numbers
Test #48:
score: 0
Accepted
time: 3457ms
memory: 62024kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 44286 ...
result:
ok 249999 numbers
Test #49:
score: 0
Accepted
time: 3510ms
memory: 61900kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000 125000...
result:
ok 249999 numbers
Test #50:
score: 0
Accepted
time: 3950ms
memory: 61724kb
input:
250000 250000 250000 1 249999 2 249998 2 249997 2 249996 2 249995 2 249994 2 249993 2 249992 2 249991 2 249990 2 249989 2 249988 2 249987 2 249986 2 249985 2 249984 2 249983 2 249982 2 249981 2 249980 2 249979 2 249978 2 249977 2 249976 2 249975 2 249974 2 249973 2 249972 2 249971 2 249970 2 249969 ...
output:
1.5 1.5 6 6 6 6 6 6 6 6 6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 6...
result:
ok 250000 numbers
Extra Test:
score: 0
Extra Test Passed