QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#323954#8237. Sugar Sweet IIucup-team133#RE 580ms40696kbC++1722.3kb2024-02-10 14:36:372024-02-10 14:36:38

Judging History

你现在查看的是最新测评结果

  • [2024-11-04 16:59:03]
  • hack成功,自动添加数据
  • (/hack/1109)
  • [2024-02-10 14:36:38]
  • 评测
  • 测评结果:RE
  • 用时:580ms
  • 内存:40696kb
  • [2024-02-10 14:36:37]
  • 提交

answer

// -fsanitize=undefined,
//#define _GLIBCXX_DEBUG


#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>
#include <chrono>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <vector>

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder





using namespace std;
using namespace atcoder;

using mint = modint1000000007;



#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()

#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";

template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;


template<class T>
bool chmin(T &a, T b){
  if (a>b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
bool chmax(T &a, T b){
  if (a<b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
T sum(vec<T> x){
  T res=0;
  for (auto e:x){
    res += e;
  }
  return res;
}

template<class T>
void printv(vec<T> x){
  for (auto e:x){
    cout<<e<<" ";
  }
  cout<<endl;
}



template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
  os << "(" << A.first <<", " << A.second << ")";
  return os;
}

ostream& operator<<(ostream& os, const mint& a){
	os << a.val();
	return os;
}

template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
  os << "set{";
  for (auto a:S){
    os << a;
    auto it = S.find(a);
    it++;
    if (it!=S.end()){
      os << ", ";
    }
  }
  os << "}";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
  os << "[";
  rep(i,A.size()){
    os << A[i];
    if (i!=A.size()-1){
      os << ", ";
    }
  }
  os << "]" ;
  return os;
}

const int M = 10000;
mint fact[M],finv[M],inverse[M];

const int mod = 1e9+7;

void init_mint(){
  fact[0] = 1, fact[1] = 1;
  finv[0] = 1, finv[1] = 1;
  inverse[0] = 0, inverse[1] = 1;
  for (int n=2;n<M;n++){
    fact[n] = fact[n-1] * n;
    inverse[n] = (-inverse[mod % n]) * (mod/n);
    finv[n] = finv[n-1] * inverse[n];
  }
}


mint comb(int n,int r){
  if (r==-1 && n==-1) return 1;
  if (r < 0 || n < r) return 0;
  return fact[n] * finv[r] * finv[n-r];
}



void solve(){
  int n;
  cin>>n;
  vec<int> A(n);
  rep(i,n) cin>>A[i];
  vec<int> B(n);
  vec<vec<int>> child(n);
  rep(i,n){
    cin>>B[i];
    B[i]--;
    child[B[i]].push_back(i);
  }
  vec<int> W(n);
  rep(i,n) cin>>W[i];

  vec<int> dist(n,-1);
  deque<int> deq = {};
  rep(i,n){
    if (A[i] < A[B[i]]){
      dist[i] = 1;
      deq.push_back(i);
    }
  }
  while (!deq.empty()){
    int v = deq.front(); deq.pop_front();
    for (auto nv:child[v]){
      if (dist[nv] == -1 && A[nv] < A[v] + W[v]){
        dist[nv] = dist[v] + 1;
        deq.push_back(nv);
      }
    }
  }

  rep(i,n){
    if (dist[i] == -1){
      cout << A[i];
    }
    else{
      mint res = mint(A[i]) + mint(W[i]) * finv[dist[i]];
      cout << res.val();
    }

    if (i == n-1){
      cout << "\n";
    }
    else{
      cout << " ";
    }
  }


  
 

 



}



int main(){

  init_mint();
  int T;
  cin>>T;
  while (T--){
    solve();
  }

}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3984kb

input:

4
4
2 5 5 2
4 2 1 3
3 2 1 4
3
5 4 3
1 1 1
6 6 6
3
5 4 3
2 3 1
1 2 3
5
2 1 3 2 1
5 1 1 3 4
1 3 4 2 4

output:

500000007 5 5 6
5 10 9
166666673 5 6
500000006 4 3 4 5

result:

ok 15 numbers

Test #2:

score: 0
Accepted
time: 352ms
memory: 3796kb

input:

50000
5
508432375 168140163 892620793 578579275 251380640
3 4 4 1 3
346232959 736203130 186940774 655629320 607743104
1
863886789
1
364158084
18
864679185 463975750 558804051 604216585 694033700 499417132 375390750 337590759 467353355 111206671 983760005 984444619 322277587 138763925 205122047 97736...

output:

854665334 904343293 590444253 906393935 859123744
863886789
871186919 814243920 968784984 206455474 17527050 449261413 196759729 901433117 519383814 907574792 983760005 984444619 489899014 435736558 113628626 977360756 482247153 963066959
665922935 577926775 132646723 421298438 601054667 99438820 94...

result:

ok 500000 numbers

Test #3:

score: 0
Accepted
time: 365ms
memory: 3900kb

input:

5000
32
770948244 768935990 679008477 140059459 126718762 172369567 60723299 139563987 671220914 149354390 157693423 281776861 412464718 869245476 446234952 827569915 294423239 672541652 309942421 252597259 603376135 207343159 409718246 366254256 59153054 589167713 171168426 802508752 545258815 7373...

output:

351791786 607445427 53351025 96277100 671164280 94237502 491532542 689573864 38427324 382704130 816373728 309284273 690430261 869245476 291526004 827569915 99656414 748890295 609504084 467918578 603376135 501064338 501009010 85120176 17055939 969361082 892391697 802508752 545258815 333168524 1165920...

result:

ok 500000 numbers

Test #4:

score: 0
Accepted
time: 358ms
memory: 4244kb

input:

500
831
941014154 653817226 737317394 548891909 650240324 784152288 337897920 919008275 807254058 243382923 935726688 583553418 88833789 750399807 577623567 595406246 982133524 532836513 286249019 780939608 102125785 501372622 567570217 761966021 24185161 261377492 548514161 60622277 424507766 53868...

output:

230438528 510098604 738011151 548891909 580268181 784152288 162823835 919008275 807254058 787780699 169718491 688535564 555077367 834193932 577623567 199204617 982133524 727940533 893934195 780939608 85179822 570950549 313144085 761966021 26675845 421401245 433344217 526647729 682184775 211847212 73...

result:

ok 500000 numbers

Test #5:

score: 0
Accepted
time: 384ms
memory: 5964kb

input:

50
15547
79925051 123631785 451773599 290189979 8044136 985464173 25844832 289071231 239507420 289791589 915514277 479789432 442504231 802244771 740816861 403881580 976651260 224945729 212313439 170590725 774102963 484364764 878553828 980521523 949147335 322115091 853616905 280879526 946658136 41530...

output:

284534137 370503506 451773599 700040615 326578027 985464173 354118840 239415089 726041909 289791589 556747412 978820837 939334538 802244771 214118527 173005433 375935904 451502781 253004725 744007077 774102963 484364764 542287768 980521523 949147335 322115091 853616905 154636248 189607066 65863811 8...

result:

ok 500000 numbers

Test #6:

score: 0
Accepted
time: 446ms
memory: 23100kb

input:

5
323943
564718673 657489855 373282330 667584659 850348020 593942770 903492853 897217447 211655411 409828915 29599937 288981803 845363118 245960658 704846394 990499066 857206811 623803672 777109873 572212135 214230853 504844223 538282312 203265013 863644873 788795254 168640248 169295455 678434394 38...

output:

204335171 290429080 749926264 271550943 90669489 593942770 395887561 897217447 1122646 649466642 138487066 705990516 34851501 408992627 704846394 990499066 593266173 831686749 216979707 572212135 604730070 581128644 538282312 915779172 863644873 788795254 107879446 16737318 389993995 484044594 99298...

result:

ok 500000 numbers

Test #7:

score: 0
Accepted
time: 480ms
memory: 33924kb

input:

1
500000
167959139 634074578 773386884 503722503 2087506 443917727 691952768 150414369 45277106 674936674 279198849 421436316 140515506 451394766 695984050 254786900 17672277 228874183 25408976 166546966 609238004 783615461 523051181 854261286 433389755 773727734 127680943 43034811 892657961 4051531...

output:

504430027 374470866 773386884 605046474 48849004 443917727 489848651 669510599 807540660 887381332 434390308 135903469 373981470 557045185 817416129 330927981 295776527 272925008 971275424 706959112 736278170 783615461 722484387 90619431 433389755 621669631 773800724 379052020 48101859 531350264 344...

result:

ok 500000 numbers

Test #8:

score: 0
Accepted
time: 580ms
memory: 3760kb

input:

500000
1
641679119
1
46363815
1
409126743
1
301850965
1
479434398
1
8087428
1
411052661
1
274814245
1
186109822
1
557051627
1
832961130
1
468245461
1
885774901
1
205966212
1
640022376
1
40112818
1
451543633
1
116777249
1
301353585
1
865639134
1
978071440
1
696105130
1
54386476
1
950481378
1
64069307...

output:

641679119
409126743
479434398
411052661
186109822
832961130
885774901
640022376
451543633
301353585
978071440
54386476
640693072
310901737
164748344
943205363
136533544
727803925
460499039
232286575
665455084
837511803
315243095
26199131
205377168
16924774
899338264
331544562
309311598
848509027
606...

result:

ok 500000 numbers

Test #9:

score: 0
Accepted
time: 436ms
memory: 19336kb

input:

10
994
192416571 736204386 760505341 281487941 959877974 851233214 663685576 509485978 365899785 537198264 317546803 126718048 460789228 897818658 18680833 984634479 787676854 563354285 458421086 514363741 55602674 442874164 399256047 391675537 579236972 193191514 216578877 252675142 31271148 194871...

output:

80356619 157454092 293206050 6022041 731069905 151604390 514334525 563895392 669575403 774624127 317546803 558641523 992472593 125739893 949366972 984634479 881030593 213655841 746280399 717378810 243072174 891873405 399256047 391675537 579236972 807047987 154410058 377650673 806701544 229640743 643...

result:

ok 500000 numbers

Test #10:

score: 0
Accepted
time: 401ms
memory: 10808kb

input:

10
4059
462418415 299614005 191197342 44762066 300901267 961385491 493309329 213597634 708323640 936922772 23497231 461479602 140639435 670254967 996272440 567967593 778428919 911913371 691558703 798524068 217290311 543452971 177158172 239882043 702125314 764626435 303826249 933606746 990809366 4915...

output:

462418415 299614005 191197342 44762066 300901267 961385491 493309329 213597634 708323640 936922772 23497231 461479602 140639435 670254967 996272440 567967593 778428919 911913371 691558703 798524068 217290311 543452971 177158172 239882043 702125314 764626435 303826249 933606746 990809366 491533949 60...

result:

ok 500000 numbers

Test #11:

score: 0
Accepted
time: 431ms
memory: 13836kb

input:

10
49657
477209301 840947435 604333484 622155980 678038014 465127998 957089089 894355510 968377771 949800543 862532505 722250589 268937725 969156606 245573854 500968667 899760449 185359545 330216049 769402977 835596137 37232643 40464607 103622719 539578359 384115371 545015501 704344659 315733366 841...

output:

24386105 149263245 522545322 156355561 933854795 205614293 995498647 387478497 31080083 918162413 730147773 712199885 489347745 311275833 154244381 933432658 13230008 733866425 156882463 932040286 265929098 20750751 332234430 298250715 885880707 802538280 397378619 111913092 274794813 303506899 8109...

result:

ok 500000 numbers

Test #12:

score: 0
Accepted
time: 464ms
memory: 39616kb

input:

1
500000
236077977 86078372 260030447 395969828 987989549 57339217 275325872 747113738 476061771 412580153 589144151 967633191 693832436 289364785 777281154 23767823 119804469 146277545 336859935 601994339 832084033 682171073 644911370 660086987 120599826 211375398 248467132 452293864 933711769 2134...

output:

376442474 992314650 260030447 347914044 987989549 261512576 620193765 252324505 790146989 865733342 834724719 967633191 693832436 494604333 184612685 915370675 330814922 883875013 449533217 314709314 691938928 269064599 644911370 355292009 913699960 679983605 248467132 35400898 933711769 841252659 7...

result:

ok 500000 numbers

Test #13:

score: 0
Accepted
time: 424ms
memory: 38476kb

input:

1
500000
754060142 541221496 818408807 292833795 269734500 93049742 705655834 477052382 289531753 577836666 901816346 592911223 178433769 399478363 283922345 827396041 473750582 281252938 115479501 635570951 994423568 64580695 992394937 399396922 971794709 932519987 788927885 774996990 50650116 2299...

output:

754060142 541221496 818408807 292833795 269734500 93049742 705655834 477052382 289531753 577836666 901816346 592911223 178433769 399478363 283922345 827396041 473750582 281252938 115479501 635570951 994423568 64580695 992394937 399396922 971794709 932519987 788927885 774996990 50650116 229975458 916...

result:

ok 500000 numbers

Test #14:

score: 0
Accepted
time: 434ms
memory: 40696kb

input:

1
500000
948465494 889673067 78604955 288678380 624259497 587725418 914612913 470414324 640293852 69403930 732304399 984202467 475189347 358661723 895292367 904751346 482451942 380615981 38838062 846352252 118278338 801007154 879314174 400606456 470425193 156860717 555128174 660373938 534085518 6964...

output:

682100510 69430093 885818571 433752951 55853128 688792518 262586376 340748896 446059734 917268853 348594032 2950636 384831840 755020970 899489920 635829311 684006178 834972925 840082011 289298627 171986021 9622553 639011662 141474012 211951889 579556713 801939340 729112576 48106562 188754659 4252982...

result:

ok 500000 numbers

Test #15:

score: 0
Accepted
time: 14ms
memory: 3948kb

input:

8960
4
1 1 1 1
1 1 1 1
1 1 1 1
4
1 1 1 1
1 1 1 2
1 1 1 1
4
1 1 1 1
1 1 1 3
1 1 1 1
4
1 1 1 1
1 1 1 4
1 1 1 1
4
1 1 1 1
1 1 2 1
1 1 1 1
4
1 1 1 1
1 1 2 2
1 1 1 1
4
1 1 1 1
1 1 2 3
1 1 1 1
4
1 1 1 1
1 1 2 4
1 1 1 1
4
1 1 1 1
1 1 3 1
1 1 1 1
4
1 1 1 1
1 1 3 2
1 1 1 1
4
1 1 1 1
1 1 3 3
1 1 1 1
4
1 1 1 1...

output:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 ...

result:

ok 35840 numbers

Test #16:

score: 0
Accepted
time: 17ms
memory: 3984kb

input:

8960
4
1 1 1 1
1 1 1 1
2 1 1 2
4
1 1 1 1
1 1 1 2
2 1 1 2
4
1 1 1 1
1 1 1 3
1 1 1 2
4
1 1 1 1
1 1 1 4
2 1 1 1
4
1 1 1 1
1 1 2 1
1 1 2 1
4
1 1 1 1
1 1 2 2
1 1 1 1
4
1 1 1 1
1 1 2 3
1 2 1 1
4
1 1 1 1
1 1 2 4
1 2 1 2
4
1 1 1 1
1 1 3 1
1 1 1 1
4
1 1 1 1
1 1 3 2
2 1 2 1
4
1 1 1 1
1 1 3 3
2 1 2 2
4
1 1 1 1...

output:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 ...

result:

ok 35840 numbers

Test #17:

score: 0
Accepted
time: 246ms
memory: 3752kb

input:

100000
5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 2
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 3
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 4
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 5
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 1
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 2
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 3
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 4
1 1 1 1 1
5
1 1...

output:

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
...

result:

ok 500000 numbers

Test #18:

score: 0
Accepted
time: 211ms
memory: 3752kb

input:

100000
5
1 1 1 1 1
1 1 1 1 1
2 2 1 2 1
5
1 1 1 1 1
1 1 1 1 2
2 1 1 1 1
5
1 1 1 1 1
1 1 1 1 3
2 2 1 2 2
5
1 1 1 1 1
1 1 1 1 4
1 1 1 2 1
5
1 1 1 1 1
1 1 1 1 5
1 1 2 2 2
5
1 1 1 1 1
1 1 1 2 1
1 2 2 1 2
5
1 1 1 1 1
1 1 1 2 2
2 1 1 2 1
5
1 1 1 1 1
1 1 1 2 3
1 1 1 2 1
5
1 1 1 1 1
1 1 1 2 4
2 2 2 1 1
5
1 1...

output:

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
...

result:

ok 500000 numbers

Test #19:

score: 0
Accepted
time: 230ms
memory: 3864kb

input:

100000
5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 2
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 3
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 4
1 1 1 1 1
5
1 1 1 1 1
1 1 1 1 5
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 1
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 2
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 3
1 1 1 1 1
5
1 1 1 1 1
1 1 1 2 4
1 1 1 1 1
5
1 1...

output:

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
...

result:

ok 500000 numbers

Test #20:

score: 0
Accepted
time: 209ms
memory: 3736kb

input:

100000
5
1 1 1 1 1
1 1 1 1 1
1 2 1 2 2
5
1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
5
1 1 1 1 1
1 1 1 1 3
1 1 2 2 1
5
1 1 1 1 1
1 1 1 1 4
1 2 2 2 1
5
1 1 1 1 1
1 1 1 1 5
2 1 2 2 1
5
1 1 1 1 1
1 1 1 2 1
1 2 1 2 2
5
1 1 1 1 1
1 1 1 2 2
1 1 2 1 1
5
1 1 1 1 1
1 1 1 2 3
1 1 2 1 1
5
1 1 1 1 1
1 1 1 2 4
1 2 2 1 2
5
1 1...

output:

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
...

result:

ok 500000 numbers

Test #21:

score: 0
Accepted
time: 264ms
memory: 13804kb

input:

10
67005
9 7 6 4 7 4 9 9 7 9 3 3 10 2 9 5 10 9 2 5 2 10 10 6 8 1 2 10 5 6 9 10 4 3 7 1 6 1 8 9 5 6 7 3 9 8 7 5 9 5 7 10 6 7 6 1 2 7 8 10 9 7 7 9 6 7 7 1 5 2 8 2 6 9 10 2 3 6 6 4 8 4 10 7 9 6 9 3 10 2 5 7 5 6 7 4 1 10 5 9 8 7 9 8 1 2 4 4 6 10 5 10 3 1 5 5 8 6 6 4 6 6 6 1 4 10 6 4 6 1 8 3 9 2 3 1 7 10...

output:

14 500000015 6 500000009 12 166666673 9 9 7 9 11 4 12 6 333333346 13 500000017 9 5 7 7 500000018 10 500000012 8 3 4 14 500000013 8 10 333333346 500000011 9 14 3 11 6 10 9 5 11 7 7 500000013 8 11 500000012 9 6 15 10 10 10 41666673 8 12 8 41666675 14 466666679 500000014 7 9 11 13 17 2 13 12 13 2 12 14...

result:

ok 500000 numbers

Test #22:

score: 0
Accepted
time: 248ms
memory: 13488kb

input:

10
16914
2 7 1 4 3 9 7 4 2 6 5 10 4 8 1 3 1 7 4 9 10 7 3 3 8 9 5 3 4 7 3 4 1 9 8 2 6 1 2 10 8 8 10 1 10 5 1 4 3 7 6 6 9 10 9 2 1 9 10 4 7 8 4 5 7 4 9 9 2 5 5 10 8 8 10 9 1 4 3 7 8 1 7 2 2 5 4 6 4 5 8 9 8 8 4 6 5 7 4 1 8 5 9 6 10 7 2 3 1 7 10 9 6 1 3 7 3 3 4 3 2 9 4 3 8 4 5 9 6 7 2 4 10 10 7 3 2 6 7 ...

output:

2 7 1 4 3 9 7 4 2 6 5 10 4 8 1 3 1 7 4 9 10 7 3 3 8 9 5 3 4 7 3 4 1 9 8 2 6 1 2 10 8 8 10 1 10 5 1 4 3 7 6 6 9 10 9 2 1 9 10 4 7 8 4 5 7 4 9 9 2 5 5 10 8 8 10 9 1 4 3 7 8 1 7 2 2 5 4 6 4 5 8 9 8 8 4 6 5 7 4 1 8 5 9 6 10 7 2 3 1 7 10 9 6 1 3 7 3 3 4 3 2 9 4 3 8 4 5 9 6 7 2 4 10 10 7 3 2 6 7 10 1 3 10...

result:

ok 500000 numbers

Test #23:

score: 0
Accepted
time: 262ms
memory: 13504kb

input:

10
10563
3 5 7 7 5 8 2 8 4 9 8 3 1 2 10 3 10 4 1 9 10 6 6 1 3 10 7 9 8 9 3 4 4 4 3 2 9 8 9 8 6 2 2 8 4 9 6 4 5 3 10 8 7 5 3 10 7 10 1 4 1 5 6 1 10 5 5 2 6 9 8 4 1 9 7 10 7 1 5 1 8 8 9 1 1 6 3 4 7 3 2 6 8 2 5 10 10 7 4 3 7 8 4 9 2 3 4 3 3 3 8 7 4 6 7 3 3 3 10 6 10 5 6 1 7 8 8 2 9 3 7 8 3 10 4 9 9 2 1...

output:

359751463 904874554 229938470 882195861 780949275 331791745 624581548 197629788 252226236 627961650 667718837 660026072 455781815 805394160 10 388559555 10 160787255 702850047 620730839 10 778440331 558485864 171429465 77425246 10 691871232 502091382 30487404 294023469 251001865 255633120 690181718 ...

result:

ok 500000 numbers

Test #24:

score: 0
Accepted
time: 283ms
memory: 39576kb

input:

1
500000
5 5 3 1 1 10 4 5 1 7 5 6 10 3 6 7 7 3 5 3 4 8 1 7 6 9 10 2 6 3 6 3 4 7 10 10 10 5 6 9 6 6 2 10 3 5 1 2 8 4 1 8 6 1 1 1 4 9 9 5 5 5 5 10 10 1 7 2 1 10 5 5 6 3 2 7 1 10 8 2 1 10 8 10 5 5 1 4 5 9 4 1 8 3 8 7 6 9 1 8 2 5 5 10 1 10 1 6 1 9 3 4 3 9 4 6 2 10 5 6 8 5 3 8 8 4 3 4 6 9 2 6 10 6 9 1 8 ...

output:

8 14 500000008 4 11 10 9 5 5 7 6 13 10 5 6 15 500000011 11 12 500000011 500000010 11 7 8 833333346 10 11 11 13 333333340 10 12 12 16 500000016 10 10 15 11 9 500000013 833333346 7 10 6 666666678 4 4 8 10 5 466666678 666666678 5 11 3 9 10 9 15 333333341 15 11 10 10 2 166666675 7 5 10 12 125000006 7 50...

result:

ok 500000 numbers

Test #25:

score: 0
Accepted
time: 264ms
memory: 38568kb

input:

1
500000
4 6 8 1 7 4 10 10 1 6 6 2 5 3 2 4 5 4 7 5 2 10 3 2 6 7 6 3 4 4 5 8 3 2 6 10 6 5 8 2 10 9 8 1 3 3 1 1 5 1 8 9 10 1 7 9 4 10 1 9 2 5 7 2 8 6 7 6 4 8 6 3 7 7 10 5 10 1 4 6 8 4 6 2 4 7 6 9 9 4 4 4 5 4 8 4 5 9 8 9 5 7 4 3 2 7 9 7 1 10 5 4 3 6 2 1 2 3 4 3 3 9 5 10 2 8 10 9 3 3 4 2 3 6 2 7 3 6 7 8...

output:

4 6 8 1 7 4 10 10 1 6 6 2 5 3 2 4 5 4 7 5 2 10 3 2 6 7 6 3 4 4 5 8 3 2 6 10 6 5 8 2 10 9 8 1 3 3 1 1 5 1 8 9 10 1 7 9 4 10 1 9 2 5 7 2 8 6 7 6 4 8 6 3 7 7 10 5 10 1 4 6 8 4 6 2 4 7 6 9 9 4 4 4 5 4 8 4 5 9 8 9 5 7 4 3 2 7 9 7 1 10 5 4 3 6 2 1 2 3 4 3 3 9 5 10 2 8 10 9 3 3 4 2 3 6 2 7 3 6 7 8 9 2 1 1 ...

result:

ok 500000 numbers

Test #26:

score: -100
Runtime Error

input:

1
500000
7 5 7 9 6 8 9 7 7 6 9 10 9 2 8 10 3 7 3 8 4 3 6 8 7 2 8 1 3 9 9 2 1 2 10 9 1 6 6 3 8 1 9 7 3 9 4 5 9 10 4 6 5 9 7 10 5 8 2 10 2 9 5 5 5 5 10 10 3 7 5 9 2 2 2 8 10 8 10 8 8 6 8 6 9 9 4 7 8 5 10 5 7 3 9 4 5 5 2 2 7 10 8 5 10 4 1 3 9 10 3 3 5 7 1 8 4 4 2 1 1 4 4 4 5 1 10 3 6 7 3 3 10 8 5 5 10 ...

output:


result: