QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#323770 | #8242. V-Diagram | ucup-team133# | AC ✓ | 272ms | 4536kb | C++17 | 22.4kb | 2024-02-10 13:19:27 | 2024-02-10 13:19:27 |
Judging History
answer
// -fsanitize=undefined,
//#define _GLIBCXX_DEBUG
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>
#include <chrono>
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <algorithm>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
using namespace std;
using namespace atcoder;
using mint = modint1000000007;
#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";
template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
template<class T>
bool chmin(T &a, T b){
if (a>b){
a = b;
return true;
}
return false;
}
template<class T>
bool chmax(T &a, T b){
if (a<b){
a = b;
return true;
}
return false;
}
template<class T>
T sum(vec<T> x){
T res=0;
for (auto e:x){
res += e;
}
return res;
}
template<class T>
void printv(vec<T> x){
for (auto e:x){
cout<<e<<" ";
}
cout<<endl;
}
template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
os << "(" << A.first <<", " << A.second << ")";
return os;
}
ostream& operator<<(ostream& os, const mint& a){
os << a.val();
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
os << "set{";
for (auto a:S){
os << a;
auto it = S.find(a);
it++;
if (it!=S.end()){
os << ", ";
}
}
os << "}";
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
os << "[";
rep(i,A.size()){
os << A[i];
if (i!=A.size()-1){
os << ", ";
}
}
os << "]" ;
return os;
}
const int M = 10000;
mint fact[M],finv[M],inverse[M];
const int mod = 1e9+7;
void init_mint(){
fact[0] = 1, fact[1] = 1;
finv[0] = 1, finv[1] = 1;
inverse[0] = 0, inverse[1] = 1;
for (int n=2;n<M;n++){
fact[n] = fact[n-1] * n;
inverse[n] = (-inverse[mod % n]) * (mod/n);
finv[n] = finv[n-1] * inverse[n];
}
}
mint comb(int n,int r){
if (r==-1 && n==-1) return 1;
if (r < 0 || n < r) return 0;
return fact[n] * finv[r] * finv[n-r];
}
void solve(){
int n;
cin>>n;
vec<int> A(n);
rep(i,n) cin>>A[i];
int mid = -1;
for (int i=1;i<n-1;i++){
if (A[i-1] > A[i] && A[i] < A[i+1]){
mid = i;
break;
}
}
assert (mid!=-1);
auto cond = [&](long double x){
long double left_sum_max = -1e17,tmp_left_sum = 0;
for (int i=mid-1;0<=i;i--){
tmp_left_sum += A[i] - x;
chmax(left_sum_max,tmp_left_sum);
}
long double right_sum_max = -1e17,tmp_right_sum = 0;
for (int i=mid+1;i<n;i++){
tmp_right_sum += A[i] - x;
chmax(right_sum_max,tmp_right_sum);
}
return right_sum_max + left_sum_max + (A[mid]-x) >= 0;
};
long double ok = 0,ng = 1e9+10;
rep(t,100){
long double x = (ok+ng)/2;
if (cond(x)){
ok = x;
}
else{
ng = x;
}
}
cout << ok << "\n";
}
int main(){
cout << setprecision(18);
init_mint();
int T;
cin>>T;
while (T--){
solve();
}
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 4156kb
input:
2 4 8 2 7 10 6 9 6 5 3 4 8
output:
6.75 5.83333333333333333
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 272ms
memory: 4160kb
input:
100000 3 948511478 739365502 813471668 3 881046825 27458122 398507422 3 987554257 399092415 924260278 3 984128569 125199021 716360525 3 529589236 45783262 313507287 3 645443456 85994112 226010681 3 914820717 228360911 572267310 3 418958362 56703604 195276041 3 64461646 26764720 26995581 3 914535039 ...
output:
833782882.666666667 435670789.666666667 770302316.666666667 608562705 296293261.666666667 319149416.333333333 571816312.666666667 223646002.333333333 39407315.6666666667 383253737.666666667 734363638.666666667 779975824.333333333 490276408.333333333 574448414 337980292 654961203.666666667 583384189....
result:
ok 100000 numbers
Test #3:
score: 0
Accepted
time: 144ms
memory: 4180kb
input:
10000 4 194123849 79274911 191162487 570110764 86 957917218 915359202 914726017 873273226 867724859 867674150 809652204 805531383 745262007 743835491 727071232 714782071 645394643 639432679 594879540 587173904 583418126 560538589 518721836 469558994 427721766 411582333 404948350 402948978 357228675 ...
output:
258668002.75 527118856.755555555 495489050.352941176 525232841.15 472025965.7 546154003.125 543366581.516129032 254833443.2 428466450.05 502458665.384615385 564217787.333333333 479468115.11827957 466246020.204545455 570997279.666666667 537648134.285714286 787549533.333333333 454304797.816326531 5000...
result:
ok 10000 numbers
Test #4:
score: 0
Accepted
time: 136ms
memory: 4060kb
input:
1000 357 999039850 998470288 997001139 994662646 991895879 986310400 986201443 971759917 969292691 967648767 963962459 963603069 959189978 954532156 936459732 927268934 925199105 918559276 906725073 903024522 891346023 886340039 872105565 871168803 867996002 862017068 851751458 849013653 847967471 8...
output:
493655540.627450981 515292672.416666667 498032099.981481481 481127839.625 526924843.336283186 488725771.457191781 533287305.946428571 438471966.333333333 536630212.257575758 560617979.739726027 489475479.028169015 484316845.366197183 535619161.371428571 557358012.719101124 550404574.081481481 509656...
result:
ok 1000 numbers
Test #5:
score: 0
Accepted
time: 139ms
memory: 4016kb
input:
100 1152 999672457 998726401 995956848 990786177 990411263 984766135 983346495 982593760 982250360 980153123 975942408 974567443 973232196 970303426 967381747 966555245 966400114 965308448 961378668 960953166 960451796 957742285 957273419 956986267 956737190 956352393 954265694 953272327 952096100 9...
output:
504372755.02915952 495156421.177481969 511090599.621761658 497554816.124314443 514036973.345568489 509664056.912052117 500937804.963666394 515638734.543239952 500934821.109582767 518390767.739205526 504669526.958182551 501996849.059280854 504619908.646973364 505603904.384359401 500109676.745469421 5...
result:
ok 100 numbers
Test #6:
score: 0
Accepted
time: 140ms
memory: 4308kb
input:
10 29043 999960631 999958134 999901247 999737433 999520614 999519045 999460207 999379140 999279078 999214335 999048733 998866618 998693991 998649435 998636721 998575997 998542938 998513617 998477418 998422985 998403836 998262102 998124856 998017139 998013085 997959891 997944356 997893923 997524695 9...
output:
497704976.046566069 500149119.648922145 499456770.182770491 500288732.702417858 505548409.83238636 502546060.651801795 500560614.163130313 502706676.399498761 500677023.496245818 505195094.97029703
result:
ok 10 numbers
Test #7:
score: 0
Accepted
time: 140ms
memory: 4536kb
input:
1 300000 999995409 999991717 999988340 999981078 999978323 999978096 999977575 999967796 999958049 999950023 999927083 999923421 999918905 999916153 999912740 999911175 999907902 999902376 999899096 999889548 999888902 999880881 999878324 999867494 999866296 999864006 999863565 999859765 999841183 9...
output:
499603654.397238731
result:
ok found '499603654.397238731', expected '499603654.397238612', error '0.000000000'
Extra Test:
score: 0
Extra Test Passed