QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#323314 | #5104. Guardians of the Gallery | crimson231 | WA | 89ms | 4112kb | C++14 | 11.9kb | 2024-02-09 09:09:27 | 2024-02-09 09:09:28 |
Judging History
answer
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
typedef long long ll;
typedef long double ld;
const ld TOL = 1e-8;
const ld INF = 1e17;
const int LEN = 102;
int N, t{ 0 };
ld COST[LEN];
struct Info {
int i;
ld c;
bool operator < (const Info& x) const { return c > x.c; }
};
std::vector<Info> G[LEN];
std::priority_queue<Info> Q;
ld dijkstra(int v, int g) {
for (int i = 0; i < LEN; i++) COST[i] = INF;
Q.push({ v, 0 });
COST[v] = 0;
while (Q.size()) {
Info p = Q.top(); Q.pop();
if (p.c > COST[p.i]) continue;
for (const Info& w : G[p.i]) {
ld cost = p.c + w.c;
if (COST[w.i] > cost) {
COST[w.i] = cost;
Q.push({ w.i, cost });
}
}
}
return COST[g];
}
bool z(const ld& x) { return std::abs(x) < TOL; }
struct Pos {
ld x, y;
int i;
Pos(ld X, ld Y, int I) : x(X), y(Y), i(I) {}
Pos() : x(0), y(0), i(0) {}
bool operator == (const Pos& p) const { return z(x - p.x) && z(y - p.y); }
bool operator < (const Pos& p) const { return z(x - p.x) ? y < p.y : x < p.x; }
Pos operator + (const Pos& p) const { return { x + p.x, y + p.y, 0 }; }
Pos operator - (const Pos& p) const { return { x - p.x, y - p.y, 0 }; }
Pos operator * (const ld& n) const { return { x * n, y * n, 0 }; }
Pos operator / (const ld& n) const { return { x / n, y / n, 0 }; }
ld operator * (const Pos& p) const { return { x * p.x + y * p.y }; }
ld operator / (const Pos& p) const { return { x * p.y - y * p.x }; }
Pos operator ~ () const { return { -y, x, 0 }; }
ld operator ! () const { return x * y; }
Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; }
Pos& operator *= (const ld& scale) { x *= scale; y *= scale; return *this; }
ld mag() const { return hypot(x, y); }
} gallery[LEN], nodes[LEN], sculpture{ 0, 0, 0 }, guard{ 0, 0, 1 };// const Pos O = { 0, 0, -1 };
struct Vec {
ld vy, vx;
bool operator < (const Vec& v) const { return z(vy - v.vy) ? vx < v.vx : vy < v.vy; }
bool operator == (const Vec& v) const { return (z(vy - v.vy) && z(vx - v.vx)); }
ld operator / (const Vec& v) const { return vy * v.vx - vx * v.vy; }
Vec operator ~ () const { return { -vx, vy }; }
}; const Vec Zero = { 0, 0 };
struct Line {
Vec s;
ld c;
bool operator < (const Line& l) const {
bool f1 = Zero < s;
bool f2 = Zero < l.s;
if (f1 != f2) return f1;
ld ccw = s / l.s;
return z(ccw) ? c * hypot(l.s.vy, l.s.vx) < l.c * hypot(s.vy, s.vx) : ccw > 0;
}
ld operator / (const Line& l) const { return s / l.s; }
};
Line L(const Pos& s, const Pos& e) {
ld dy, dx, c;
dy = e.y - s.y;
dx = s.x - e.x;
c = dy * s.x + dx * s.y;
return { { dy, dx } , c };
}
Line rotate90(const Line& l, const Pos& p) {
Vec s = ~l.s;
ld c = s.vy * p.x + s.vx * p.y;
return { s, c };
}
Pos intersection(const Line& l1, const Line& l2) {
Vec v1 = l1.s, v2 = l2.s;
ld det = v1 / v2;
return {
(l1.c * v2.vx - l2.c * v1.vx) / det,
(l2.c * v1.vy - l1.c * v2.vy) / det,
0
};
}
ld cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
int ccw(const Pos& d1, const Pos& d2, const Pos& d3) {
ld ret = cross(d1, d2, d3);
return z(ret) ? 0 : ret > 0 ? 1 : -1;
}
ld dot(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) * (d3 - d2); }
bool on_seg_strong(const Pos& d1, const Pos& d2, const Pos& d3) {
ld dot_ = dot(d1, d3, d2);
return z(cross(d1, d2, d3)) && (dot_ > 0 || z(dot_));
}
bool on_seg_weak(const Pos& d1, const Pos& d2, const Pos& d3) {
ld dot_ = dot(d1, d3, d2);
return z(cross(d1, d2, d3)) && dot_ > 0;
}
bool inner_check(Pos H[], const int& sz, const Pos& p) {
int cnt = 0;
for (int i = 0; i < sz; i++) {
Pos cur = H[i], nxt = H[(i + 1) % sz];
//if (on_seg_strong(cur, nxt, p)) continue;
if (on_seg_strong(cur, nxt, p)) return 1;
if (z(cur.y - nxt.y)) continue;
//if (cur.x < p.x && nxt.x < p.x) continue;
if (nxt.y < cur.y) std::swap(cur, nxt);
if (nxt.y - TOL < p.y || cur.y > p.y) continue;
cnt += ccw(cur, nxt, p) > 0;
}
return cnt & 1;
}
bool intersect(const Pos& s1, const Pos& s2, const Pos& d1, const Pos& d2) {
bool f1 = ccw(s1, s2, d1) * ccw(s2, s1, d2) > 0;
bool f2 = ccw(d1, d2, s1) * ccw(d2, d1, s2) > 0;
return f1 && f2;
}
bool blocked(const Pos& s1, const Pos& s2, const Pos& d1, const Pos& d2) {
bool f1 = ccw(s1, s2, d1) * ccw(s2, s1, d2) > 0;
bool f2 = ccw(d1, d2, s1) * ccw(d2, d1, s2) > 0;
bool f3 = on_seg_weak(s1, s2, d1) || on_seg_weak(s1, s2, d2);
return (f1 && f2) || f3;
}
bool blocked(Pos H[], const int& sz, const Pos& s1, const Pos& s2) {
for (int i = 0; i < sz; i++) if (blocked(s1, s2, H[i], H[(i + 1) % sz])) return 1;
return 0;
}
bool invisible(Pos H[], const int& sz, const Pos& p, const Pos& target) {
bool l{ 0 }, r{ 0 };
for (int i = 0; i < sz; i++) {
Pos cur = H[i], nxt = H[(i + 1) % sz];
if (!ccw(p, target, cur) && !ccw(p, target, nxt)) continue;
if (intersect(p, target, cur, nxt)) return 1;
if (on_seg_weak(p, target, cur) && ccw(p, target, nxt) > 0) l = 1;
if (on_seg_weak(p, target, nxt) && ccw(p, target, cur) > 0) l = 1;
if (on_seg_weak(p, target, cur) && ccw(p, target, nxt) < 0) r = 1;
if (on_seg_weak(p, target, nxt) && ccw(p, target, cur) < 0) r = 1;
if (l && r) return 1;
}
//return l && r;
return 0;
}
bool visible(Pos H[], const int& sz, const Pos& p, const Pos& inx, const Pos& target) {
return inner_check(H, sz, inx) && !blocked(H, sz, p, inx) && inner_check(H, sz, (p + inx) * .5) && !invisible(H, sz, inx, target);
}
void init() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cout << std::fixed;
std::cout.precision(7);
std::cin >> N;
for (int i = 0; i < N; i++) std::cin >> gallery[i].x >> gallery[i].y, gallery[i].i = i + 2;
std::cin >> guard.x >> guard.y >> sculpture.x >> sculpture.y;
sculpture.i = 0;
guard.i = 1;
if (!invisible(gallery, N, guard, sculpture)) { G[1].push_back({ 0, 0 }); return; }
t = 0;
nodes[t++] = sculpture;
nodes[t++] = guard;
Pos seg;
for (int i = 0; i < N; i++) nodes[t++] = gallery[i];
for (int i = 1; i < t; i++) {
if (!invisible(gallery, N, nodes[i], nodes[0])) G[i].push_back({ 0, 0 });
for (int j = i + 1; j < t; j++) {
if (!blocked(gallery, N, nodes[i], nodes[j])
&& inner_check(gallery, N, (nodes[i] + nodes[j]) * .5)) {
seg = nodes[i] - nodes[j];
G[i].push_back({ j, seg.mag() });
G[j].push_back({ i, seg.mag() });
}
}
}
Line view_line, last;
Pos inx;
for (int i = 0; i < N; i++) {
view_line = L(sculpture, gallery[i]);
last = rotate90(view_line, guard);
inx = intersection(view_line, last);
if (visible(gallery, N, guard, inx, sculpture))
G[guard.i].push_back({ 0, (guard - inx).mag() });
for (int j = 0; j < N; j++) {
if (i == j) continue;
Pos cur = gallery[j], pre = gallery[(j + N - 1) % N], nxt = gallery[(j + 1) % N];
last = rotate90(view_line, cur);
inx = intersection(view_line, last);
if (visible(gallery, N, cur, inx, sculpture))
G[gallery[j].i].push_back({ 0, (cur - inx).mag() });
last = L(cur, pre);
inx = intersection(view_line, last);
if (on_seg_strong(cur, pre, inx) && !invisible(gallery, N, inx, sculpture))
G[gallery[j].i].push_back({ 0, (cur - inx).mag() });
if (!blocked(gallery, N, guard, inx) && on_seg_strong(cur, pre, inx) && !invisible(gallery, N, inx, sculpture))
G[guard.i].push_back({ 0, (guard - inx).mag() });
last = L(cur, nxt);
inx = intersection(view_line, last);
if (on_seg_strong(cur, nxt, inx) && !invisible(gallery, N, inx, sculpture))
G[gallery[j].i].push_back({ 0, (cur - inx).mag() });
if (!blocked(gallery, N, guard, inx) && on_seg_strong(cur, nxt, inx) && !invisible(gallery, N, inx, sculpture))
G[guard.i].push_back({ 0, (guard - inx).mag() });
}
}
return;
}
void solve() { init(); std::cout << dijkstra(1, 0) << "\n"; return; }
int main() { solve(); return 0; }//boj26133
/*
16
13 33
20 60
23 66
39 97
49 105
73 166
100 205
117 272
98 216
80 180
66 172
68 156
51 122
41 121
22 92
2 44
10 40
104 228
140.8722826
8
10 10
40 25
20 25
20 35
12 23
30 23
10 20
5 40
15 15
19 26
25.0000000
*/
//ld cross(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) / (d4 - d3); }
//int ccw(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) {
// ld ret = cross(d1, d2, d3, d4);
// return z(ret) ? 0 : ret > 0 ? 1 : -1;
//}
//bool CW(const Line& l1, const Line& l2, const Line& target) {
// if (l1.s / l2.s < TOL) return 0;
// Pos p = intersection(l1, l2);
// return target.s.vy * p.x + target.s.vx * p.y > target.c - TOL;
//}
//bool half_plane_intersection(std::vector<Line>& HP, std::vector<Pos>& hull) {
// std::deque<Line> dq;
// std::sort(HP.begin(), HP.end());
// for (const Line& l : HP) {
// if (!dq.empty() && z(dq.back() / l)) continue;
// while (dq.size() >= 2 && CW(dq[dq.size() - 2], dq.back(), l)) dq.pop_back();
// while (dq.size() >= 2 && CW(l, dq.front(), dq[1])) dq.pop_front();
// dq.push_back(l);
// }
// while (dq.size() >= 3 && CW(dq[dq.size() - 2], dq.back(), dq.front())) dq.pop_back();
// while (dq.size() >= 3 && CW(dq.back(), dq.front(), dq[1])) dq.pop_front();
// for (int i = 0; i < dq.size(); i++) {
// Line cur = dq[i], nxt = dq[(i + 1) % dq.size()];
// if (cur / nxt < TOL) {
// hull.clear();
// return 0;
// }
// hull.push_back(intersection(cur, nxt));
// }
// return 1;
//}
//void init() {
// std::cin.tie(0)->sync_with_stdio(0);
// std::cout.tie(0);
// std::cout << std::fixed;
// std::cout.precision(7);
// std::cin >> N;
// for (int i = 0; i < N; i++) std::cin >> gallery[i].x >> gallery[i].y, gallery[i].i = i + 2;
// std::cin >> guard.x >> guard.y >> sculpture.x >> sculpture.y;
// sculpture.i = 0;
// guard.i = 1;
//
// t = 0;
// nodes[t++] = sculpture;
// nodes[t++] = guard;
//
// Pos cost;
// for (int i = 0; i < N; i++) nodes[t++] = gallery[i];
// for (int i = 1; i < t; i++) {//O(N^3)
// if (!invisible(gallery, N, nodes[i], nodes[0])) G[i].push_back({ 0, 0 });
// for (int j = i + 1; j < t; j++) {
// if (!blocked(gallery, N, nodes[i], nodes[j])
// && inner_check(gallery, N, (nodes[i] + nodes[j]) * .5)) {
// cost = nodes[i] - nodes[j];
// G[i].push_back({ j, cost.mag() });
// G[j].push_back({ i, cost.mag() });
// }
// }
// }
// Line view_line, last;
// Pos inx;
// for (int i = 0; i < N; i++) {//O(N^3)
// view_line = L(sculpture, gallery[i]);
// last = rotate90(view_line, guard);
// inx = intersection(view_line, last);
// //if (inner_check(gallery, N, inx)
// // && !blocked(gallery, N, guard, inx)
// // && inner_check(gallery, N, (guard + inx) * .5)
// // && !invisible(gallery, N, inx, sculpture))
// // G[guard.i].push_back({ 0, (guard - inx).mag() });
// if (visible(gallery, N, guard, inx, sculpture))
// G[guard.i].push_back({ 0, (guard - inx).mag() });
// for (int j = 0; j < N; j++) {
// if (i == j) continue;
// last = rotate90(view_line, gallery[j]);
// inx = intersection(view_line, last);
// //if (inner_check(gallery, N, inx)
// // && !blocked(gallery, N, gallery[j], inx)
// // && inner_check(gallery, N, (gallery[j] + inx) * .5)
// // && !invisible(gallery, N, inx, sculpture))
// // G[gallery[j].i].push_back({ 0, (gallery[j] - inx).mag() });
// if (visible(gallery, N, gallery[j], inx, sculpture))
// G[gallery[j].i].push_back({ 0, (gallery[j] - inx).mag() });
// }
// }
// return;
//}
//bool inner_check(std::vector<Pos>& H, const Pos& p) {
// int cnt = 0;
// int sz = H.size();
// for (int i = 0; i < sz; i++) {
// Pos cur = H[i], nxt = H[(i + 1) % sz];
// if (on_seg_strong(cur, nxt, p)) continue;
// //if (on_seg_strong(cur, nxt, p)) return 1;
// if (z(cur.y - nxt.y)) continue;
// if (cur.x < p.x && nxt.x < p.x) continue;
// if (nxt.y < cur.y) std::swap(cur, nxt);
// if (nxt.y - TOL < p.y || cur.y > p.y) continue;
// cnt += ccw(cur, nxt, p) > 0;
// }
// return cnt & 1;
//}
詳細信息
Test #1:
score: 100
Accepted
time: 2ms
memory: 4112kb
input:
15 13 7 20 20 39 20 49 7 73 13 100 5 117 38 98 20 80 20 66 40 68 20 51 20 41 39 22 48 2 39 10 20 104 20
output:
29.0000000
result:
ok found '29.0000000', expected '29.0000000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 2ms
memory: 3832kb
input:
16 39 2 48 22 39 41 20 51 20 68 40 66 20 80 20 98 38 117 5 100 13 73 7 49 19 39 20 23 20 20 7 13 20 10 20 104
output:
13.0000000
result:
ok found '13.0000000', expected '13.0000000', error '0.0000000'
Test #3:
score: 0
Accepted
time: 2ms
memory: 4008kb
input:
16 13 33 20 60 23 66 39 97 49 105 73 166 100 205 117 272 98 216 80 180 66 172 68 156 51 122 41 121 22 92 2 44 10 40 104 228
output:
140.8722826
result:
ok found '140.8722826', expected '140.8722826', error '0.0000000'
Test #4:
score: 0
Accepted
time: 1ms
memory: 4056kb
input:
16 64 17 50 28 67 23 65 18 77 4 88 20 78 10 70 29 61 28 47 32 54 17 43 13 35 20 41 30 27 20 42 6 81 12 33 23
output:
64.2045377
result:
ok found '64.2045377', expected '64.2045377', error '0.0000000'
Test #5:
score: 0
Accepted
time: 1ms
memory: 4040kb
input:
16 64 17 50 28 67 23 65 18 77 4 88 20 78 10 70 29 61 28 47 32 54 17 43 13 35 20 41 30 27 20 42 6 33 23 81 12
output:
72.2834980
result:
ok found '72.2834980', expected '72.2834980', error '0.0000000'
Test #6:
score: 0
Accepted
time: 1ms
memory: 3972kb
input:
7 76 8 389 215 691 19 407 331 489 397 300 403 363 334 126 60 393 370
output:
6.6579178
result:
ok found '6.6579178', expected '6.6579178', error '0.0000000'
Test #7:
score: 0
Accepted
time: 0ms
memory: 3964kb
input:
3 0 1000 1000 0 1000 1000 567 578 589 601
output:
0.0000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #8:
score: 0
Accepted
time: 0ms
memory: 3980kb
input:
3 0 1000 0 0 1000 0 366 366 367 366
output:
0.0000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #9:
score: 0
Accepted
time: 1ms
memory: 4032kb
input:
5 50 93 278 178 199 300 596 362 208 519 421 388 142 153
output:
175.1697594
result:
ok found '175.1697594', expected '175.1697594', error '0.0000000'
Test #10:
score: 0
Accepted
time: 1ms
memory: 4084kb
input:
7 50 93 278 178 199 300 401 312 483 162 596 362 208 519 488 252 142 153
output:
289.6821399
result:
ok found '289.6821399', expected '289.6821399', error '0.0000000'
Test #11:
score: 0
Accepted
time: 1ms
memory: 3972kb
input:
8 10 10 40 25 20 25 20 35 12 23 30 23 10 20 5 40 15 15 19 26
output:
25.0000000
result:
ok found '25.0000000', expected '25.0000000', error '0.0000000'
Test #12:
score: 0
Accepted
time: 1ms
memory: 4096kb
input:
9 5 1000 6 3 5 999 0 1000 0 0 500 2 500 0 1000 0 1000 1000 1 4 993 1
output:
5.1010479
result:
ok found '5.1010479', expected '5.1010479', error '0.0000000'
Test #13:
score: 0
Accepted
time: 89ms
memory: 4108kb
input:
100 695 43 538 87 463 208 597 329 750 306 812 481 960 555 912 344 983 450 987 573 994 852 941 985 801 855 792 800 849 806 792 696 924 701 939 672 710 546 722 668 723 807 715 767 624 524 634 554 547 503 357 352 627 458 651 495 937 558 932 545 864 509 753 489 509 397 341 335 300 495 199 528 380 688 48...
output:
1695.1865730
result:
ok found '1695.1865730', expected '1695.1865730', error '0.0000000'
Test #14:
score: 0
Accepted
time: 1ms
memory: 4104kb
input:
20 840 854 839 45 996 905 959 938 852 938 730 423 425 493 136 481 213 778 527 740 691 941 22 830 83 313 462 155 636 21 462 321 360 324 238 422 402 492 806 406 952 822 410 838
output:
1424.3842015
result:
ok found '1424.3842015', expected '1424.3842015', error '0.0000000'
Test #15:
score: -100
Wrong Answer
time: 42ms
memory: 3984kb
input:
74 89 395 52 622 124 832 115 698 95 598 199 491 190 356 191 398 132 315 94 371 34 221 91 0 153 139 220 465 260 283 312 30 409 15 338 50 343 52 437 69 359 89 332 213 377 505 375 396 405 199 657 90 658 50 360 50 618 23 642 7 824 191 688 417 795 227 709 286 662 321 646 175 485 210 381 357 420 329 441 3...
output:
2037.1787887
result:
wrong answer 1st numbers differ - expected: '2036.7557099', found: '2037.1787887', error = '0.0002077'