QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#322661#8209. Curly Palindromestriple__a#AC ✓2ms9736kbC++2010.1kb2024-02-07 14:16:462024-02-07 14:16:47

Judging History

This is the latest submission verdict.

  • [2024-02-07 14:16:47]
  • Judged
  • Verdict: AC
  • Time: 2ms
  • Memory: 9736kb
  • [2024-02-07 14:16:46]
  • Submitted

answer

// #pragma GCC optimize("trapv")
#include<bits/stdc++.h>
#define int long long
#define i128 __int128_t
using namespace std;

constexpr int P = 998244353;
// constexpr int P = 1e9+7;
using i64 = long long;
// assume -P <= x < 2P
int norm(int x) {
    if (x < 0) {
        x += P;
    }
    if (x >= P) {
        x -= P;
    }
    return x;
}
template<class T>
T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x%P)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(P - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, P - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % P;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend std::istream &operator>>(std::istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend std::ostream &operator<<(std::ostream &os, const Z &a) {
        return os << a.val();
    }
};
std::vector<int> rev;
std::vector<Z> roots{0, 1};
void dft(std::vector<Z> &a) {
    int n = a.size();
    if ((int)(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if ((int)(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(3), (P - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = roots[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                Z u = a[i + j];
                Z v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}
void idft(std::vector<Z> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}
struct Poly {
    std::vector<Z> a;
    Poly() {}
    explicit Poly(int size, std::function<Z(int)> f = [](int) { return 0; }) : a(size) {
        for (int i = 0; i < size; i++) {
            a[i] = f(i);
        }
    }
    Poly(const std::vector<Z> &a) : a(a) {}
    Poly(const std::initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = std::min(k, size());
        return Poly(std::vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(std::vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        std::vector<Z> res(std::max(a.size(), b.size()));
        for (int i = 0; i < (int)(res.size()); i++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        std::vector<Z> res(std::max(a.size(), b.size()));
        for (int i = 0; i < (int)(res.size()); i++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a) {
        std::vector<Z> res(a.size());
        for (int i = 0; i < (int)(res.size()); i++) {
            res[i] = -a[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        if (a.size() < b.size()) {
            std::swap(a, b);
        }
        if (b.size() < 128) {
            Poly c(a.size() + b.size() - 1);
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    c[i + j] += a[i] * b[j];
                }
            }
            return c;
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; ++i) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Z a, Poly b) {
        for (int i = 0; i < (int)(b.size()); i++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < (int)(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        std::vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; ++i) {
            res[i] = (i + 1) * a[i + 1];
        }
        return Poly(res);
    }
    Poly integr() const {
        std::vector<Z> res(size() + 1);
        for (int i = 0; i < size(); ++i) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(std::vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        std::reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
    std::vector<Z> eval(std::vector<Z> x) const {
        if (size() == 0) {
            return std::vector<Z>(x.size(), 0);
        }
        const int n = std::max((int)(x.size()), size());
        std::vector<Poly> q(4 * n);
        std::vector<Z> ans(x.size());
        x.resize(n);
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = (l + r) / 2;
                build(2 * p, l, m);
                build(2 * p + 1, m, r);
                q[p] = q[2 * p] * q[2 * p + 1];
            }
        };
        build(1, 0, n);
        std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < (int)(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
                work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
};


const int N=500007;
const int INF=LLONG_MAX/4;
mt19937 rng(1234);

int n;
int cnt[N],x[N],y[N];
signed main(){
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    cin>>n;
    for (int i=0;i<n;++i){
        char c;
        cin>>x[i]>>y[i]>>c;
        cnt[c-'a']++;
    }
    bool ok=0;
    for (int i=0;i<26;++i){
        if (cnt[i]>1) ok=1;
    }
    if (!ok) {cout<<1; return 0;}
    ok=0;
    for (int i=0;i<n;++i){
        for (int j=0;j<n;++j){
            for (int k=0;k<n;++k){
                int dx1=x[i]-x[j], dx2=x[i]-x[k];
                int dy1=y[i]-y[j], dy2=y[i]-y[k];
                if (dx1*dy2!=dy1*dx2) ok=1;
            }
        }
    }
    if (ok) cout<<"Infinity";
    else cout<<2;
}



这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 7748kb

input:

4
0 0 o
1 1 c
2 2 p
3 3 c

output:

2

result:

ok single line: '2'

Test #2:

score: 0
Accepted
time: 1ms
memory: 7728kb

input:

3
2 3 e
3 2 e
8 9 e

output:

Infinity

result:

ok single line: 'Infinity'

Test #3:

score: 0
Accepted
time: 1ms
memory: 9736kb

input:

3
0 0 p
1 1 c
2 2 o

output:

1

result:

ok single line: '1'

Test #4:

score: 0
Accepted
time: 0ms
memory: 7744kb

input:

3
1000000000 1000000000 a
0 1000000000 b
1000000000 0 a

output:

Infinity

result:

ok single line: 'Infinity'

Test #5:

score: 0
Accepted
time: 1ms
memory: 7688kb

input:

5
10 0 a
20 0 b
30 0 c
41 0 d
42 0 e

output:

1

result:

ok single line: '1'

Test #6:

score: 0
Accepted
time: 1ms
memory: 7756kb

input:

6
999999999 1000000000 b
0 0 a
1 1 a
2 2 c
3 3 d
4 4 e

output:

Infinity

result:

ok single line: 'Infinity'

Test #7:

score: 0
Accepted
time: 0ms
memory: 7916kb

input:

1
52524 6287 o

output:

1

result:

ok single line: '1'

Test #8:

score: 0
Accepted
time: 2ms
memory: 7688kb

input:

100
620277501 352211578 a
588745387 204868067 a
279087773 862840409 a
368942847 32429835 a
986161321 811576403 a
108066135 22119129 a
854047430 512772131 a
196877261 824967276 a
467809712 903492464 a
549499819 662329823 a
358024530 364859507 a
323528347 87306983 a
346602511 829302399 a
216164493 243...

output:

Infinity

result:

ok single line: 'Infinity'

Test #9:

score: 0
Accepted
time: 2ms
memory: 7916kb

input:

100
964906060 545884156 b
525844995 678718384 a
767874103 529057847 b
335899480 961060244 b
458611128 578152716 b
449062933 779433747 a
672526007 895103745 b
111902255 436806217 a
873636242 773662394 a
250185459 522336127 a
975489206 77297854 b
54583166 952092302 a
863604349 909716224 a
70170689 533...

output:

Infinity

result:

ok single line: 'Infinity'

Test #10:

score: 0
Accepted
time: 0ms
memory: 7984kb

input:

100
197441358 388148939 b
374082779 922588431 b
545855650 531926491 b
953289473 249626190 a
997668672 445922624 b
941714598 963970889 a
252303702 946260915 c
705178416 744961339 a
889814639 633539049 b
526449032 53699804 b
937365752 742338401 b
294384909 349114633 b
245948038 979810742 c
46734037 30...

output:

Infinity

result:

ok single line: 'Infinity'

Test #11:

score: 0
Accepted
time: 2ms
memory: 7920kb

input:

100
388507460 599009943 b
222320564 871491185 b
323837196 829762427 d
202083245 906788357 c
200289725 313692532 c
65770043 517104251 d
905710326 292385376 b
3487284 126745388 b
495927620 829852193 b
97679895 880030775 b
677903935 407378948 d
534186652 672508037 b
964728216 976276332 b
391893605 5597...

output:

Infinity

result:

ok single line: 'Infinity'

Test #12:

score: 0
Accepted
time: 2ms
memory: 7788kb

input:

100
916010051 146307434 c
480623765 410328522 d
28189815 127598363 c
745844310 195354303 c
739347268 591527857 d
484792781 775270322 b
190520730 638509838 d
6828862 434900510 b
512106017 321132628 e
668910759 411394452 b
639780481 72419495 a
773988394 364497659 c
347071905 341338141 d
368456952 5180...

output:

Infinity

result:

ok single line: 'Infinity'

Test #13:

score: 0
Accepted
time: 2ms
memory: 7660kb

input:

100
86229674 966475154 g
188905509 869037044 j
206431319 885238671 g
384203494 608011484 b
94907195 845681979 j
93491181 751753218 f
658592436 874867662 j
390873056 182636414 b
313350178 5306341 j
964520327 884419573 c
616180319 281427186 e
506244230 796896398 b
427455351 844237339 f
78090262 517379...

output:

Infinity

result:

ok single line: 'Infinity'

Test #14:

score: 0
Accepted
time: 2ms
memory: 7728kb

input:

100
215977786 124594064 t
330805101 191632694 a
89113834 355297431 h
763543468 766857893 i
129574380 326152621 t
980011509 580824171 l
593104211 610936942 p
433305160 169599834 n
169733556 636573400 d
529043807 454466372 h
898931244 35490902 l
277816100 810116698 c
35985918 405195648 i
188992394 893...

output:

Infinity

result:

ok single line: 'Infinity'

Test #15:

score: 0
Accepted
time: 2ms
memory: 7692kb

input:

100
708120351 620407913 n
535329934 654852971 t
609745260 478749536 q
362094763 276915210 s
280981242 647870195 n
936373080 162431905 h
260497437 466345348 o
181689176 124319222 n
488142303 321448453 b
39367382 527550314 k
301142721 730766894 n
126691970 634927413 k
412986447 268439483 x
227790067 4...

output:

Infinity

result:

ok single line: 'Infinity'

Test #16:

score: 0
Accepted
time: 0ms
memory: 7636kb

input:

26
526735598 478961006 a
531191531 475454507 b
378204498 595844306 c
442072871 545584487 d
525250287 480129839 e
498514689 501168833 f
568324306 446233682 g
470293780 523376660 h
554956507 456753179 i
455440670 535064990 j
397513541 580649477 k
612883636 411168692 l
513367799 489480503 m
465837847 5...

output:

1

result:

ok single line: '1'

Test #17:

score: 0
Accepted
time: 0ms
memory: 7956kb

input:

100
548848602 549471818 a
320148329 317853761 b
508881564 508994876 c
704275972 706882148 d
371217322 369574298 e
597697204 598943636 f
624341896 625928264 g
380098886 378569174 h
313487156 311107604 i
553289384 553969256 j
466694135 466269215 k
406743578 405553802 l
488898045 488756405 m
653206979 ...

output:

2

result:

ok single line: '2'

Test #18:

score: 0
Accepted
time: 2ms
memory: 7744kb

input:

100
509098504 507901696 w
513647756 511852544 t
638752186 620500864 f
565964154 557287296 e
438585098 446663552 s
283910530 312334720 l
702441714 675812736 g
295283660 322211840 h
561414902 553336448 b
434035846 442712704 g
688793958 663960192 n
447683602 454565248 o
320304546 343941504 c
540943268 ...

output:

2

result:

ok single line: '2'

Extra Test:

score: 0
Extra Test Passed