QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#322056#5014. 复读程度hos_lyric0 0ms0kbC++1424.0kb2024-02-06 08:47:222024-02-06 08:47:23

Judging History

你现在查看的是最新测评结果

  • [2024-02-06 08:47:23]
  • 评测
  • 测评结果:0
  • 用时:0ms
  • 内存:0kb
  • [2024-02-06 08:47:22]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")


////////////////////////////////////////////////////////////////////////////////
// SA-IS
//   String: string, vector<int>, vector<long long>
//   if sigma <= n,  O(n) time, O(n) space
//   if sigma >  n,  O(n log n) time, O(n) space
template <class String> vector<int> suffixArrayRec(const String &as) {
  const int n = as.size();
  if (n == 0) return {};
  const auto minmaxA = minmax_element(as.begin(), as.end());
  const auto minA = *minmaxA.first, maxA = *minmaxA.second;
  if (static_cast<unsigned long long>(maxA) - minA >=
      static_cast<unsigned long long>(n)) {
    vector<int> us(n);
    for (int u = 0; u < n; ++u) us[u] = u;
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (as[u] < as[v]);
    });
    int b = 0;
    vector<int> bs(n, 0);
    for (int i = 1; i < n; ++i) {
      if (as[us[i - 1]] != as[us[i]]) ++b;
      bs[us[i]] = b;
    }
    return suffixArrayRec(bs);
  }
  const int sigma = maxA - minA + 1;
  vector<int> pt(sigma + 1, 0), poss(sigma);
  for (int u = 0; u < n; ++u) ++pt[as[u] - minA + 1];
  for (int a = 0; a < sigma; ++a) pt[a + 1] += pt[a];
  // cmp[u] := (as[u, n) < as[u + 1, n))
  vector<bool> cmp(n);
  cmp[n - 1] = false;
  for (int u = n - 1; --u >= 0; ) {
    cmp[u] = (as[u] != as[u + 1]) ? (as[u] < as[u + 1]) : cmp[u + 1];
  }
  // ><,  nn - id (0 <= id < n)
  int nn = 0;
  vector<int> ids(n, 0);
  int last = n;
  vector<int> nxt(n, 0);
  // put ><, from the tail of each bucket
  vector<int> us(n, 0);
  memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int));
  for (int u = n - 1; --u >= 1; ) if (!cmp[u - 1] && cmp[u]) {
    ids[u] = ++nn;
    nxt[u] = last;
    last = u;
    us[--poss[as[u] - minA]] = u;
  }
  // follow > backwards, from the head of each bucket
  memcpy(poss.data(), pt.data(), sigma * sizeof(int));
  us[poss[as[n - 1] - minA]++] = n - 1;
  for (int i = 0; i < n; ++i) {
    const int u = us[i];
    if (u && !cmp[u - 1]) us[poss[as[u - 1] - minA]++] = u - 1;
  }
  // follow < backwards, from the tail of each bucket
  memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int));
  for (int i = n; --i >= 0; ) {
    const int u = us[i];
    if (u && cmp[u - 1]) us[--poss[as[u - 1] - minA]] = u - 1;
  }
  if (nn) {
    int vsLen = 0;
    vector<int> vs(nn);
    for (const int u : us) if (ids[u]) vs[vsLen++] = u;
    int b = 0;
    vector<int> bs(nn, 0);
    for (int j = 1; j < nn; ++j) {
      // as[v1, w1] (< or =) as[v0, w0]
      int v1 = vs[j - 1], v0 = vs[j];
      const int w1 = nxt[v1], w0 = nxt[v0];
      if (w1 - v1 != w0 - v0) {
        ++b;
      } else {
        for (; ; ++v1, ++v0) {
          if (v1 == n) { ++b; break; }
          if (as[v1] != as[v0]) { ++b; break; }
          if (v1 == w1) break;
        }
      }
      bs[nn - ids[vs[j]]] = b;
    }
    for (int u = 0; u < n; ++u) if (ids[u]) vs[nn - ids[u]] = u;
    const auto sub = suffixArrayRec(bs);
    // put ><, from the tail of each bucket
    memset(us.data(), 0, n * sizeof(int));
    memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int));
    for (int j = nn; --j >= 0; ) {
      const int u = vs[sub[j]];
      us[--poss[as[u] - minA]] = u;
    }
    // follow > backwards, from the head of each bucket
    memcpy(poss.data(), pt.data(), sigma * sizeof(int));
    us[poss[as[n - 1] - minA]++] = n - 1;
    for (int i = 0; i < n; ++i) {
      const int u = us[i];
      if (u && !cmp[u - 1]) us[poss[as[u - 1] - minA]++] = u - 1;
    }
    // follow < backwards, from the tail of each bucket
    memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int));
    for (int i = n; --i >= 0; ) {
      const int u = us[i];
      if (u && cmp[u - 1]) us[--poss[as[u - 1] - minA]] = u - 1;
    }
  }
  return us;
}

// us[i]: i-th suffix
// su[u]: index of as[u, n)
// hs[i]: longest common prefix of as[us[i - 1], n) and as[us[i], n)
struct SuffixArray {
  int n;
  bool rmq;
  vector<int> us, su, hs;
  SuffixArray() : n(0), rmq(false) {}
  SuffixArray(const string &as, bool rmq_) : rmq(rmq_) { build(as); }
  SuffixArray(const vector<int> &as, bool rmq_) : rmq(rmq_) { build(as); }
  SuffixArray(const vector<long long> &as, bool rmq_) : rmq(rmq_) { build(as); }
  template <class String> void build(const String &as) {
    n = as.size();
    us = suffixArrayRec(as);
    su.resize(n + 1);
    for (int i = 0; i < n; ++i) su[us[i]] = i;
    su[n] = -1;
    hs.assign(n, 0);
    for (int h = 0, u = 0; u < n; ++u) if (su[u]) {
      for (int v = us[su[u] - 1]; v + h < n && as[v + h] == as[u + h]; ++h) {}
      hs[su[u]] = h;
      if (h) --h;
    }
    if (rmq) {
      const int logN = n ? (31 - __builtin_clz(n)) : 0;
      hs.resize((logN + 1) * n - (1 << logN) + 1);
      for (int e = 0; e < logN; ++e) {
        int *hes = hs.data() + e * n;
        for (int i = 0; i <= n - (1 << (e + 1)); ++i) {
          hes[n + i] = min(hes[i], hes[i + (1 << e)]);
        }
      }
    }
  }
  // Returns longest common prefix of as[u, n) and as[v, n).
  //   0 <= u, v <= n
  //   Assumes rmq.
  inline int lcp(int u, int v) const {
    if (u == v) return n - u;
    int i = su[u], j = su[v];
    if (i > j) swap(i, j);
    const int e = 31 - __builtin_clz(j - i);
    return min(hs[e * n + i + 1], hs[e * n + j + 1 - (1 << e)]);
  }
};
////////////////////////////////////////////////////////////////////////////////


// before HLD:
//   0 <= u <= n: suffix [u, n)  (n: root, empty string)
//   n <  u <  m: LCA needed
// after HLD:
//   DFS-order
//   0: root, empty string
//   perm[u]: suffix[u, n)  (0 <= u <= n)
struct SuffixTree {
  int n, m;
  SuffixArray sa;
  struct Node {
    int par, len, occ;
    inline int l() const { return occ; }
    inline int r() const { return occ + len; }
  };
  vector<Node> nodes;
  vector<int> perm;
  SuffixTree() {}
  SuffixTree(const string &str, bool lastOcc) { build(str, lastOcc); }
  SuffixTree(const vector<int> &str, bool lastOcc) { build(str, lastOcc); }
  SuffixTree(const vector<long long> &str, bool lastOcc) { build(str, lastOcc); }
  template <class String> void build(const String &str, bool lastOcc) {
    n = str.size();
    m = n + 1;
    sa = SuffixArray(str, /*rmq=*/false);
    nodes.resize(2 * n + 1);
    nodes[n] = Node{/*par=*/-1, /*len=*/0, /*occ=*/lastOcc ? n : 0};
    int top = 0;
    vector<int> stack(n + 1);
    stack[0] = n;
    for (int i = 0; i < n; ++i) {
      const int u = sa.us[i];
      int v = -1;
      for (; nodes[stack[top]].len > sa.hs[i]; --top) {
        v = stack[top];
        nodes[nodes[v].par].occ = lastOcc ? max(nodes[nodes[v].par].occ, nodes[v].occ) : min(nodes[nodes[v].par].occ, nodes[v].occ);
      }
      if (nodes[stack[top]].len < sa.hs[i]) {
        const int w = m++;
        nodes[w] = Node{/*par=*/nodes[v].par, /*len=*/sa.hs[i], /*occ=*/nodes[v].occ};
        stack[++top] = nodes[v].par = w;
      }
      nodes[u] = Node{/*par=*/stack[top], /*len=*/n - u, /*occ=*/u};
      stack[++top] = u;
    }
    for (; top; --top) {
      const int v = stack[top];
      nodes[nodes[v].par].occ = lastOcc ? max(nodes[nodes[v].par].occ, nodes[v].occ) : min(nodes[nodes[v].par].occ, nodes[v].occ);
    }
    nodes.resize(m);
    runHld();
  }
  inline const Node &operator[](int u) const {
    return nodes[u];
  }
  inline int size(int u) const {
    return (~nodes[u].par) ? (nodes[u].len - nodes[nodes[u].par].len) : 1;
  }

  // Reindexes nodes by DFS-order.
  //   Ignores character order.
  //   Subtrees at the same "color" are isomorphic, should have the same HLD.
  //   old u -> new perm[u]
  vector<int> pt, g, head;
  void runHld() {
    pt.assign(m + 1, 0);
    for (int u = 0; u < m; ++u) if (u != n) ++pt[nodes[u].par];
    for (int u = 0; u < m; ++u) pt[u + 1] += pt[u];
    g.resize(pt[m]);
    for (int u = m; --u >= 0; ) if (u != n) g[--pt[nodes[u].par]] = u;
    vector<int> sz(m, 1);
    dfsSz(n, sz);
    int zeit = 0;
    perm.resize(m);
    head.resize(m);
    head[n] = 0;
    dfsHld(n, zeit, sz);
    assert(zeit == m);
    vector<Node> nodesReindexed(m);
    for (int u = 0; u < m; ++u) {
      Node &node = nodesReindexed[perm[u]] = nodes[u];
      if (~node.par) node.par = perm[node.par];
    }
    nodes.swap(nodesReindexed);
    for (int u = 0; u <= m; ++u) pt[u] = 0;
    for (int u = 1; u < m; ++u) ++pt[nodes[u].par];
    for (int u = 1; u < m; ++u) pt[u + 1] += pt[u];
    g.resize(pt[m]);
    for (int u = m; --u >= 1; ) g[--pt[nodes[u].par]] = u;
  }
  void dfsSz(int u, vector<int> &sz) {
    for (int i = pt[u]; i < pt[u + 1]; ++i) {
      dfsSz(g[i], sz);
      sz[u] += sz[g[i]];
    }
  }
  void dfsHld(int u, int &zeit, vector<int> &sz) {
    perm[u] = zeit++;
    if (pt[u] < pt[u + 1]) {
      int im = pt[u];
      for (int i = pt[u] + 1; i < pt[u + 1]; ++i) if (sz[g[im]] < sz[g[i]]) im = i;
      swap(g[pt[u]], g[im]);
      head[zeit] = head[zeit - 1];
      dfsHld(g[pt[u]], zeit, sz);
      for (int i = pt[u] + 1; i < pt[u + 1]; ++i) {
        head[zeit] = zeit;
        dfsHld(g[i], zeit, sz);
      }
    }
  }
  // Returns the shallowest node representing [l, r') for r <= r'.
  int locate(int l, int r) const {
    assert(0 <= l); assert(l <= r); assert(r <= n);
    for (int u = perm[l]; ; ) {
      const int h = head[u];
      const int p = nodes[h].par;
      if (!~p || nodes[p].len < r - l) {
        int lo = h - 1, hi = u;
        for (; lo + 1 < hi; ) {
          const int mid = (lo + hi) / 2;
          ((nodes[mid].len < r - l) ? lo : hi) = mid;
        }
        return hi;
      }
      u = p;
    }
  }
};

// block i contains [ls[i] + x, rs[i] - y) s.t.
//   0 <= x < sizeL(i),  0 <= y < sizeR(i, x)
//   0 <= y < sizeR(i),  0 <= x < sizeL(i, y)
struct Substring {
  // |str|
  int n;
  // stRev: occ is modified to represent the first occurrence in str
  SuffixTree st, stRev;
  // # of colors
  int size;
  // tree node -> block id
  vector<int> is, isRev;
  // [ls[i], rs[i]): representative of block i, i.e. [min l, max r)
  vector<int> ls, rs;
  // tree nodes for block i: us[js[i], js[i] + sizeL(i)), usRev[jsRev[i], jsRev[i] + sizeR(i))
  vector<int> js, jsRev, us, usRev;
  Substring() {}
  Substring(const string &str) { build(str); }
  Substring(const vector<int> &str) { build(str); }
  Substring(const vector<long long> &str) { build(str); }
  // O(n) time
  template <class String> void build(const String &str) {
    n = str.size();
    st = SuffixTree(str, /*lastOcc=*/false);
    String strRev = str;
    std::reverse(strRev.begin(), strRev.end());
    stRev = SuffixTree(strRev, /*lastOcc=*/true);
    for (int u = 0; u < stRev.m; ++u) stRev.nodes[u].occ = n - stRev.nodes[u].r();
    size = 0;
    is.assign(st.m, -1);
    isRev.assign(stRev.m, -1);
    js = jsRev = {1};
    us.assign(st.m, 0);
    usRev.assign(stRev.m, 0);
    {
      // radix sort: incr len, incr occ
      const int seqLen = (st.m - 1) + (stRev.m - 1);
      vector<int> ptLen(n + 1, 0), ptOcc(n + 1, 0);
      for (int u = 1; u < st.m; ++u) { ++ptLen[st[u].len]; ++ptOcc[st[u].occ]; }
      for (int u = 1; u < stRev.m; ++u) { ++ptLen[stRev[u].len]; ++ptOcc[stRev[u].occ]; }
      for (int len = 0; len < n; ++len) ptLen[len + 1] += ptLen[len];
      for (int occ = 0; occ < n; ++occ) ptOcc[occ + 1] += ptOcc[occ];
      vector<int> work(seqLen);
      for (int u = stRev.m; --u >= 1; ) work[--ptOcc[stRev[u].occ]] = ~u;
      for (int u = st.m; --u >= 1; ) work[--ptOcc[st[u].occ]] = u;
      vector<int> seq(seqLen);
      for (int k = seqLen; --k >= 0; ) seq[--ptLen[(work[k] >= 0) ? st[work[k]].len : stRev[~work[k]].len]] = work[k];
      for (int k = 0; k < seqLen - 1; ++k) if (seq[k] >= 0 && seq[k + 1] < 0 && st[seq[k]].len == stRev[~seq[k + 1]].len && st[seq[k]].occ == stRev[~seq[k + 1]].occ) {
        ls.push_back(st[seq[k]].l());
        rs.push_back(st[seq[k]].r());
        js.push_back(js.back() + stRev.size(~seq[k + 1]));
        jsRev.push_back(jsRev.back() + st.size(seq[k]));
        is[seq[k]] = isRev[~seq[k + 1]] = size++;
      }
    }
    {
      // radix sort: incr r, incr l
      const int seqLen = st.m - 1;
      vector<int> ptL(n + 1, 0), ptR(n + 1, 0);
      for (int u = 1; u < st.m; ++u) { ++ptL[st[u].l()]; ++ptR[st[u].r()]; }
      for (int l = 0; l < n; ++l) ptL[l + 1] += ptL[l];
      for (int r = 0; r < n; ++r) ptR[r + 1] += ptR[r];
      vector<int> work(seqLen);
      for (int u = st.m; --u >= 1; ) work[--ptL[st[u].l()]] = u;
      vector<int> seq(seqLen);
      for (int k = seqLen; --k >= 0; ) seq[--ptR[st[work[k]].r()]] = work[k];
      int i = -1, j = 0;
      for (int k = 0; k < seqLen; ++k) {
        if (~is[seq[k]]) j = js[i = is[seq[k]]];
        is[us[j++] = seq[k]] = i;
      }
    }
    {
      // radix sort: decr l, decr r
      const int seqLen = stRev.m - 1;
      vector<int> ptL(n + 1, 0), ptR(n + 1, 0);
      for (int u = 1; u < stRev.m; ++u) { ++ptL[stRev[u].l()]; ++ptR[stRev[u].r()]; }
      for (int l = n; l > 0; --l) ptL[l - 1] += ptL[l];
      for (int r = n; r > 0; --r) ptR[r - 1] += ptR[r];
      vector<int> work(seqLen);
      for (int u = stRev.m; --u >= 1; ) work[--ptR[stRev[u].r()]] = u;
      vector<int> seq(seqLen);
      for (int k = seqLen; --k >= 0; ) seq[--ptL[stRev[work[k]].l()]] = work[k];
      int i = -1, j = 0;
      for (int k = 0; k < seqLen; ++k) {
        if (~isRev[seq[k]]) j = jsRev[i = isRev[seq[k]]];
        isRev[usRev[j++] = seq[k]] = i;
      }
    }
  }
  // block id at representative position
  // st node id
  // stRev node id
  friend ostream &operator<<(ostream &os, const Substring &sub) {
    const int width = max(static_cast<int>(std::to_string(max(sub.st.m, sub.stRev.m) - 1).size()) + 1, 3);
    for (int phase = 0; phase < 3; ++phase) {
      for (int r = sub.n; r > 0; --r) {
        for (int l = 0; l < r; ++l) {
          const Location loc = sub.locate(l, r);
          string s;
          switch (phase) {
            case 0: {
              if (sub.ls[loc.i] == l && sub.rs[loc.i] == r) s = std::to_string(loc.i);
            } break;
            case 1: {
              if (sub.st[loc.u].len == r - l) s = std::to_string(loc.u);
            } break;
            case 2: {
              if (sub.stRev[loc.v].len == r - l) s = std::to_string(loc.v);
            } break;
          }
          os << "\x1b[" << (41 + loc.i % 6) << "m";
          os << string(width - static_cast<int>(s.size()), ' ') << s;
          os << "\x1b[m";
        }
        os << '\n';
      }
      os << '\n';
    }
    return os;
  }
  inline int id(int i, int x = 0) const {
    return us[js[i] + x];
  }
  inline int idRev(int i, int y = 0) const {
    return usRev[jsRev[i] + y];
  }
  inline int sizeR(int i, int x = 0) const {
    return st.size(id(i, x));
  }
  inline int sizeL(int i, int y = 0) const {
    return stRev.size(idRev(i, y));
  }
  // i: block id
  // x, y: coordinate within block i, [ls[i] + x, rs[i] - y)
  // u = st.locate(l, r)           : shallowest node of st    for [l, r') s.t. r <= r'
  // v = stRev.locate(n - r, n - l): shallowest node of stRev for [l', r) s.t. l' <= l
  // O(log(n)) time
  struct Location {
    int i, x, y, u, v;
  };
  Location locate(int l, int r) const {
    assert(0 <= l); assert(l <= r); assert(r <= n);
    if (l == r) return Location{-1, 0, 0, 0, 0};
    Location loc;
    loc.u = st.locate(l, r);
    loc.i = is[loc.u];
    loc.x = st[loc.u].l() - ls[loc.i];
    loc.y = ((l - loc.x) + (rs[loc.i] - ls[loc.i])) - r;
    loc.v = idRev(loc.i, loc.y);
    return loc;
  }

  // pattern ([l, r), t): (weight of str[l, r)) += t
  //   l < r
  //   T: commutative group
  // query [l, r): \sum[l<=l'<r'<=r] (weight of str[l', r'))
  // O(n + (|patterns| + |queries|) log(n)) time
  template <class T>
  vector<T> countOffline(const vector<pair<pair<int, int>, T>> &patterns,
                         const vector<pair<int, int>> &queries) const {
    const int patternsLen = patterns.size();
    const int queriesLen = queries.size();
    // x -> ((y, p or ~q))
    vector<vector<pair<int, int>>> eventss(st.m);
    // tree DP (path to root)
    vector<T> dp(st.m), dpRev(stRev.m);
    for (int p = 0; p < patternsLen; ++p) {
      const int l = patterns[p].first.first, r = patterns[p].first.second;
      assert(0 <= l); assert(l < r); assert(r <= n);
      const Location loc = locate(l, r);
      eventss[js[loc.i] + loc.x].emplace_back(loc.y, p);
      dp[loc.u] += patterns[p].second;
      dpRev[loc.v] += patterns[p].second;
    }
    for (int u = 1; u < st.m; ++u) dp[u] += dp[st[u].par];
    for (int u = 1; u < stRev.m; ++u) dpRev[u] += dpRev[stRev[u].par];
    // query [ls[i], rs[i])
    vector<T> corner(size);
    for (int i = 0; i < size; ++i) {
      for (int x = 0; x < sizeL(i); ++x) corner[i] += dp[id(i, x)];
      const int ii = isRev[stRev[idRev(i)].par];
      if (~ii) corner[i] += corner[ii];
    }
    // query [ls[i], rs[i] - y)
    vector<T> edge(stRev.m);
    for (int i = 0; i < size; ++i) {
      const int ii = is[st[id(i)].par];
      T sum = (~ii) ? corner[ii] : T();
      for (int y = sizeR(i); --y >= 0; ) edge[jsRev[i] + y] = sum += dpRev[idRev(i, y)];
    }
    // suffix sum of dp[st[id(i, x)].par]
    // can use segment tree if subtraction is unavailable
    vector<T> sumPar(st.m);
    for (int i = 0; i < size; ++i) {
      T sum = T();
      for (int x = sizeL(i); --x >= 0; ) sumPar[js[i] + x] = sum += dp[st[id(i, x)].par];
    }
    // query [l, r)
    vector<T> ans(queriesLen);
    vector<int> hasQuery(size, 0);
    for (int q = 0; q < queriesLen; ++q) {
      const int l = queries[q].first, r = queries[q].second;
      assert(0 <= l); assert(l <= r); assert(r <= n);
      if (l < r) {
        const Location loc = locate(queries[q].first, queries[q].second);
        if (loc.x == 0) {
          if (loc.y == 0) {
            ans[q] += corner[loc.i];
          } else {
            ans[q] += edge[jsRev[loc.i] + loc.y];
          }
        } else {
          hasQuery[loc.i] = 1;
          eventss[js[loc.i] + loc.x].emplace_back(loc.y, ~q);
          ans[q] += sumPar[js[loc.i] + loc.x];
          if (sizeL(loc.i, loc.y) < sizeL(loc.i)) ans[q] -= sumPar[js[loc.i] + sizeL(loc.i, loc.y)];
          const int vv = stRev[loc.v].par;
          const int ii = isRev[vv];
          if (~ii) ans[q] += edge[jsRev[ii] + (rs[ii] - stRev[vv].r())];
        }
      }
    }
    // offline 2D
    vector<T> bit(n + 1);
    for (int i = 0; i < size; ++i) if (hasQuery[i]) {
      for (int y = 1; y <= sizeR(i); ++y) bit[y] = T();
      for (int x = sizeL(i); --x >= 0; ) for (const auto &event : eventss[js[i] + x]) {
        if (event.second >= 0) {
          const T t = patterns[event.second].second;
          for (int y = sizeR(i) - event.first; y <= sizeR(i); y += y & -y) bit[y] += t;
        } else {
          T sum = T();
          for (int y = sizeR(i) - event.first; y > 0; y &= y - 1) sum += bit[y];
          ans[~event.second] += sum;
        }
      }
    }
    return ans;
  }
};

////////////////////////////////////////////////////////////////////////////////


using U = unsigned long long;

int N, Q;
char S[100'010];
vector<U> WL, WR;
vector<int> L0, R0, L1, R1;

int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    scanf("%s", S);
    WL.assign(N + 1, 0); for (int l = 0; l < N; ++l) scanf("%llu", &WL[l]);
    WR.assign(N + 1, 0); for (int r = 1; r <= N; ++r) scanf("%llu", &WR[r]);
    L0.resize(Q);
    R0.resize(Q);
    L1.resize(Q);
    R1.resize(Q);
    for (int q = 0; q < Q; ++q) {
      scanf("%d%d%d%d", &L0[q], &R0[q], &L1[q], &R1[q]);
      --L0[q];
      --L1[q];
    }
    
    const Substring sub(S);
// cerr<<sub<<flush;
    
    vector<int> freqNode(sub.st.m, 0);
    vector<int> fin(sub.st.m, 0), finRev(sub.stRev.m, 0);
    vector<U> VL(sub.st.m, 0), VR(sub.stRev.m, 0);
    for (int l = 0; l <= N; ++l) ++freqNode[sub.st.perm[l]];
    for (int u = 0; u < sub.st.m; ++u) fin[u] = u + 1;
    for (int v = 0; v < sub.stRev.m; ++v) finRev[v] = v + 1;
    for (int l = 0; l <= N; ++l) VL[sub.st.perm[l]] += WL[l];
    for (int r = 0; r <= N; ++r) VR[sub.stRev.perm[N - r]] += WR[r];
    for (int u = sub.st.m; --u >= 1; ) {
      const int p = sub.st[u].par;
      freqNode[p] += freqNode[u];
      chmax(fin[p], fin[u]);
      VL[p] += VL[u];
    }
    for (int v = sub.stRev.m; --v >= 1; ) {
      const int p = sub.stRev[v].par;
      chmax(finRev[p], finRev[v]);
      VR[p] += VR[v];
    }
    vector<int> freq(sub.size, 0);
    for (int i = 0; i < sub.size; ++i) freq[i] = freqNode[sub.id(i)];
// cerr<<"freq = "<<freq<<endl;
// cerr<<"fin = "<<fin<<endl;
// cerr<<"finRev = "<<finRev<<endl;
// cerr<<"VL = "<<VL<<endl;
// cerr<<"VR = "<<VR<<endl;
    
    vector<U> ans(Q, 0);
    for (int q = 0; q < Q; ++q) {
      /*
        subtree(loc0.u) in st
        subtree(loc1.v) in stRev
        bad:
          - loc0.u, but len < R0[q] - L0[q]
          - loc1.v, but len < R1[q] - L1[q]
      */
      const auto loc0 = sub.locate(L0[q], R0[q]);
      const auto loc1 = sub.locate(L1[q], R1[q]);
      // bad {}
      {
        U brt = 0;
        for (int u = loc0.u; u < fin[loc0.u]; ++u) for (int v = loc1.v; v < finRev[loc1.v]; ++v) {
          const int i = sub.is[u];
          if (i == sub.isRev[v]) {
            const int x = sub.st[u].l() - sub.ls[i];
            const int y = sub.rs[i] - sub.stRev[v].r();
            if (y < sub.sizeR(i, x)) {
cerr<<"q = "<<q<<", i = "<<i<<", u = "<<u<<", v = "<<v<<"; "<<freq[i]<<" * "<<VL[u]<<" * "<<VR[v]<<endl;
              brt += freq[i] * VL[u] * VR[v];
            }
          }
        }
        ans[q] += brt;
      }
      // bad {0}
      {
        U brt = 0;
        const int i = loc0.i, x = loc0.x, u = loc0.u;
        for (int y = loc0.y + 1; y < sub.sizeR(i, x); ++y) {
          const int v = sub.idRev(i, y);
          if (loc1.v <= v && v < finRev[loc1.v]) {
            brt += freq[i] * VL[u] * VR[v];
          }
        }
        ans[q] -= brt;
      }
      // bad {1}
      {
        U brt = 0;
        const int i = loc1.i, y = loc1.y, v = loc1.v;
        for (int x = loc1.x + 1; x < sub.sizeL(i, y); ++x) {
          const int u = sub.id(i, x);
          if (loc0.u <= u && u < fin[loc0.u]) {
            brt += freq[i] * VL[u] * VR[v];
          }
        }
        ans[q] -= brt;
      }
      // bad {0, 1}
      {
        U brt = 0;
        const int i = loc0.i;
        if (i == loc1.i) {
          const int x = loc0.x;
          const int y = loc1.y;
          if (loc0.y < y && y < sub.sizeL(i, x)) {
            brt += freq[i] * VL[loc0.u] * VR[loc1.v];
          }
        }
        ans[q] += brt;
      }
    }
    
    for (int q = 0; q < Q; ++q) {
      printf("%llu\n", ans[q]);
    }
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Time Limit Exceeded

Test #1:

score: 0
Time Limit Exceeded

input:

500 500
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

output:


result:


Subtask #2:

score: 0
Skipped

Dependency #1:

0%

Subtask #3:

score: 0
Skipped

Dependency #2:

0%

Subtask #4:

score: 0
Time Limit Exceeded

Test #22:

score: 0
Time Limit Exceeded

input:

100000 100000
zbbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaababbabaababbaabbabaababbabaabbaababbaabbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaababbaabbabaabbaababbabaababbaabbabaababbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaababbabaababbaabbabaababbabaabbaabab...

output:


result:


Subtask #5:

score: 0
Skipped

Dependency #4:

0%

Subtask #6:

score: 0
Skipped

Dependency #2:

0%

Subtask #7:

score: 0
Skipped

Dependency #3:

0%