QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#321043 | #8216. Jumbled Primes | ucup-team087# | AC ✓ | 1060ms | 3696kb | C++20 | 20.5kb | 2024-02-04 02:38:14 | 2024-02-04 02:38:15 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// 参考 https://codeforces.com/blog/entry/96344
// bmi,bmi2,lzcnt は ucup でコンパイルエラー
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io2.hpp"
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
long double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void read(int &a) { cin >> a; }
void read(long long &a) { cin >> a; }
void read(char &a) { cin >> a; }
void read(double &a) { cin >> a; }
void read(long double &a) { cin >> a; }
void read(string &a) { cin >> a; }
template <class T, class S> void read(pair<T, S> &p) { read(p.first), read(p.second); }
template <class T> void read(vector<T> &a) {for(auto &i : a) read(i);}
template <class T> void read(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
read(head);
IN(tail...);
}
template <typename T, typename U>
ostream& operator<<(ostream& os, const pair<T, U>& A) {
os << A.fi << " " << A.se;
return os;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& A) {
for (size_t i = 0; i < A.size(); i++) {
if(i) os << " ";
os << A[i];
}
return os;
}
void print() {
cout << "\n";
cout.flush();
}
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail) {
cout << head;
if (sizeof...(Tail)) cout << " ";
print(forward<Tail>(tail)...);
}
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/random/shuffle.hpp"
template <typename T>
void shuffle(vc<T>& A) {
FOR(i, len(A)) swap(A[i], A[RNG(0, i + 1)]);
}
#line 2 "library/mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "library/nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 7 "main.cpp"
vc<int> FIND_2;
vc<int> FIND_4;
vc<int> FIND_12;
vc<int> SOLVE_234;
vc<int> SOLVE_2349;
vc<int> SOLVE_23495;
vc<int> GET_ABCDE;
vc<int> FULL;
void solve() {
const int N = 100;
int QLE = 0;
#if defined(LOCAL)
vc<int> god(N);
FOR(i, N) god[i] = 1 + i;
shuffle(god);
#endif
vc<int> DIV(100);
map<pi, int> MP;
vv(int, OK, 101, 100, -1);
auto ask = [&](int i, int j) -> int {
pi p = {i, j};
if (MP.count(p)) return MP[p];
++QLE;
int ans = 0;
#if defined(LOCAL)
ans = gcd(god[i], god[j]);
#else
print("?", 1 + i, 1 + j);
INT(g);
ans = g;
#endif
MP[p] = ans;
FOR(x, 2, 101) {
if (ans % x == 0) {
if (OK[x][i] != 1) OK[x][i] = 1, DIV[i]++;
if (OK[x][j] != 1) OK[x][j] = 1, DIV[j]++;
} else {
if (OK[x][i] == 1) OK[x][j] = 0;
if (OK[x][j] == 1) OK[x][i] = 0;
}
}
return ans;
};
vc<int> P = {2, 3, 5, 7, 4, 9, 16, 25};
{ // 2, 3, 4 についてチェック
auto [a, b] = [&]() -> pair<int, int> {
while (1) {
int a = RNG(0, 100);
int b = RNG(0, 100);
if (a == b) continue;
if (ask(a, b) % 2 == 0) { return {a, b}; }
}
}();
#if defined(LOCAL)
assert(god[a] % 2 == 0);
assert(god[b] % 2 == 0);
FIND_2.eb(QLE);
#endif
vc<int> I(100);
FOR(i, 100) I[i] = i;
shuffle(I);
int g = ask(a, b);
tie(a, b) = [&]() -> pair<int, int> {
if (g % 4 == 0) return {a, b};
vc<int> S = {a, b};
for (auto& i: I) {
if (i == a || i == b) continue;
int c = S.back();
if (ask(i, c) % 2 != 0) { continue; }
if (ask(i, c) % 4 == 0) { return {i, c}; }
S.eb(i);
}
while (1) {
int a = S[RNG(0, len(S))];
int b = S[RNG(0, len(S))];
if (a == b) continue;
if (ask(a, b) % 4 == 0) return {a, b};
}
}();
#if defined(LOCAL)
assert(god[a] % 4 == 0);
assert(god[b] % 4 == 0);
FIND_4.eb(QLE);
#endif
OK[4][a] = OK[4][b] = 1;
tie(a, b) = [&]() -> pair<int, int> {
if (g % 12 == 0) return {a, b};
vc<int> S = {a, b};
vc<int> I(100);
FOR(i, 100) I[i] = i;
shuffle(I);
for (auto& i: I) {
if (i == a || i == b) continue;
if (OK[2][i] == 0) { continue; }
int c = S.back();
int gg = ask(i, c);
if (gg % 4 != 0) { continue; }
if (gg % 12 == 0) { return {i, c}; }
S.eb(i);
}
while (1) {
int a = S[RNG(0, len(S))];
int b = S[RNG(0, len(S))];
if (a == b) continue;
if (ask(a, b) % 12 == 0) return {a, b};
}
}();
#if defined(LOCAL)
assert(god[a] % 12 == 0);
assert(god[b] % 12 == 0);
FIND_12.eb(QLE);
#endif
vc<int> S = {a, b};
FOR(i, N) {
if (OK[2][i] != -1 && OK[4][i] != -1 && OK[3][i] != -1) continue;
int g = ask(S.back(), i);
if (g % 12 == 0) S.eb(i);
OK[2][i] = (g % 2 == 0);
OK[3][i] = (g % 3 == 0);
OK[4][i] = (g % 4 == 0);
}
#if defined(LOCAL)
FOR(i, N) { assert(int(god[i] % 2 == 0) == (OK[2][i])); }
FOR(i, N) { assert(int(god[i] % 3 == 0) == (OK[3][i])); }
FOR(i, N) { assert(int(god[i] % 4 == 0) == (OK[4][i])); }
SOLVE_234.eb(QLE);
#endif
}
// 9 の倍数の検証
// 4, 6 の倍数は無視してよい
{
vc<int> I;
FOR(i, 100) {
if (OK[2][i] == 1 && OK[3][i] == 1) continue;
if (OK[4][i] == 1) continue;
if (OK[3][i] == 1) I.eb(i);
}
shuffle(I);
int a = [&]() -> int {
FOR(i, 100) if (OK[9][i] == 1) return i;
while (1) {
int a = I[RNG(0, len(I))];
int b = I[RNG(0, len(I))];
if (a == b) continue;
assert(ask(a, b) % 3 == 0);
if (ask(a, b) % 9 == 0) { return a; }
}
}();
for (auto& i: I) {
if (OK[9][i] != -1) continue;
OK[9][i] = (ask(a, i) % 9 == 0);
}
}
SOLVE_2349.eb(QLE);
for (int p: {5, 7}) {
auto [a, b] = [&]() -> pair<int, int> {
FOR(i, 100) {
if (OK[p][i] != 1) continue;
FOR(j, i + 1, 100) {
if (OK[p][j] == 1) return {i, j};
}
}
while (1) {
int a = RNG(0, 100);
int b = RNG(0, 100);
if (a == b) continue;
if (ask(a, b) % p == 0) { return {a, b}; }
}
}();
FOR(i, 100) {
// if (DIV[i] >= 2) continue;
if (OK[2][i] == 1 && OK[3][i] == 1) continue;
if (OK[4][i] == 1 || OK[9][i] == 1) continue;
if (OK[p][i] != -1) continue;
OK[p][i] = (ask(i, a) % p == 0);
}
vc<int> I;
FOR(i, 100) if (OK[p][i] == 1) I.eb(i);
tie(a, b) = [&]() -> pair<int, int> {
FOR(i, 100) {
if (OK[p * p][i] != 1) continue;
FOR(j, i + 1, 100) {
if (OK[p * p][j] == 1) { return {i, j}; }
}
}
while (1) {
int a = I[RNG(0, len(I))];
int b = I[RNG(0, len(I))];
if (a == b) continue;
if (ask(a, b) % (p * p) == 0) { return {a, b}; }
}
}();
#if defined(LOCAL)
assert(god[a] % (p * p) == 0);
#endif
for (auto& i: I) {
if (OK[p * p][i] != -1) continue;
OK[p * p][i] = (ask(i, a) % (p * p) == 0);
}
}
#if defined(LOCAL)
FOR(i, N) {
if (DIV[i] >= 2) {
assert(god[i] != 1 && !primetest(god[i]));
} else {
for (int p: {2, 3, 5, 7}) {
assert(OK[p][i] != -1);
assert(OK[p][i] == (god[i] % p == 0));
}
}
}
#endif
vc<int> A, B, C, D, E;
GET_ABCDE.eb(QLE);
FOR(i, N) {
int s = 0;
if (OK[2][i] == 1) s |= 1;
if (OK[3][i] == 1) s |= 2;
if (OK[5][i] == 1) s |= 4;
if (OK[7][i] == 1) s |= 8;
if (OK[4][i] == 1) s |= 16;
if (OK[9][i] == 1) s |= 16;
if (OK[25][i] == 1) s |= 16;
if (OK[49][i] == 1) s |= 16;
if (s & 16) continue;
if (popcnt(s) >= 2) continue;
#if defined(LOCAL)
assert(OK[2][i] != -1);
assert(OK[3][i] != -1);
assert(OK[5][i] != -1);
assert(OK[7][i] != -1);
assert(int(god[i] % 2 == 0) == OK[2][i]);
assert(int(god[i] % 3 == 0) == OK[3][i]);
assert(int(god[i] % 5 == 0) == OK[5][i]);
assert(int(god[i] % 7 == 0) == OK[7][i]);
#endif
assert(popcnt(s) <= 1);
if (s == 1) A.eb(i);
if (s == 2) B.eb(i);
if (s == 4) C.eb(i);
if (s == 8) D.eb(i);
if (s == 0) E.eb(i);
}
#if defined(LOCAL)
for (auto& i: A) {
int x = god[i];
assert(x % 2 == 0);
assert(x == 2 || (x >= 22 && primetest(x / 2)));
}
for (auto& i: B) {
int x = god[i];
assert(x % 3 == 0);
assert(x == 3 || (x >= 33 && primetest(x / 3)));
}
for (auto& i: C) {
int x = god[i];
assert(x % 5 == 0);
assert(x == 5 || (x >= 55 && primetest(x / 5)));
}
for (auto& i: D) {
int x = god[i];
assert(x % 7 == 0);
assert(x == 7 || (x >= 77 && primetest(x / 7)));
}
for (auto& i: E) {
int x = god[i];
assert(x == 1 || (x >= 11 && primetest(x)));
}
// print("A", rearrange(god, A));
// print("B", rearrange(god, B));
// print("C", rearrange(god, C));
// print("D", rearrange(god, D));
// print("E", rearrange(god, E));
#endif
auto I7 = [&]() -> int {
for (auto& i: D) {
if (DIV[i] >= 2) continue;
bool ok = 1;
for (auto& j: C) {
if (ask(i, j) != 1) {
ok = 0;
break;
}
}
if (ok) return i;
}
}();
auto I5 = [&]() -> int {
for (auto& i: C) {
if (DIV[i] >= 2) continue;
bool ok = 1;
for (auto& j: B) {
if (ask(i, j) != 1) {
ok = 0;
break;
}
}
if (ok) return i;
}
}();
auto I3 = [&]() -> int {
for (auto& i: B) {
if (DIV[i] >= 2) continue;
bool ok = 1;
for (auto& j: A) {
if (ask(i, j) != 1) {
ok = 0;
break;
}
}
if (ok) return i;
}
}();
auto I2 = [&]() -> int {
for (auto& i: A) {
if (DIV[i] >= 2) continue;
bool ok = 1;
for (auto& j: E) {
if (ask(i, j) != 1) {
ok = 0;
break;
}
}
if (ok) return i;
}
}();
FULL.eb(QLE);
#if defined(LOCAL)
assert(god[I7] == 7);
assert(god[I5] == 5);
assert(god[I3] == 3);
assert(god[I2] == 2);
#endif
string ANS(100, '0');
for (auto& i: E) ANS[i] = '1';
ANS[I2] = '1';
ANS[I3] = '1';
ANS[I5] = '1';
ANS[I7] = '1';
#if defined(LOCAL)
string GOD;
FOR(i, 100) {
int x = god[i];
GOD += (x == 1 || primetest(x)) ? '1' : '0';
}
assert(GOD == ANS);
#endif
print("!", ANS);
}
void test() {
FOR(10000) solve();
print("FIND_2", SUM<int>(FIND_2));
print("FIND_4", SUM<int>(FIND_4));
print("FIND_12", SUM<int>(FIND_12));
print("SOLVE_234", SUM<int>(SOLVE_234));
print("SOLVE_2349", SUM<int>(SOLVE_2349));
print("GET_ABCDE", SUM<int>(GET_ABCDE));
print("FULL", SUM<int>(FULL));
print(SUM<int>(FULL) * 0.0001);
}
signed main() {
// test();
FOR(1000) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1060ms
memory: 3696kb
input:
2 2 9 3 4 4 7 1 1 1 1 1 1 28 4 10 1 1 1 2 20 5 2 1 4 1 1 4 2 1 2 1 4 4 2 1 1 1 8 1 2 2 1 2 2 16 1 3 1 12 3 1 1 1 3 2 2 1 1 1 2 6 3 2 1 4 4 32 12 3 1 15 2 12 3 1 1 3 1 1 8 3 2 24 2 1 1 1 4 8 2 1 6 18 4 1 1 1 6 9 1 3 2 2 4 1 4 3 1 24 3 1 3 2 2 2 16 8 1 2 1 1 1 6 3 1 6 4 3 2 6 8 3 1 6 2 1 4 1 1 12 2 3 ...
output:
? 37 45 ? 65 45 ? 22 65 ? 27 65 ? 66 65 ? 71 65 ? 54 71 ? 24 71 ? 42 71 ? 87 71 ? 4 71 ? 62 71 ? 30 71 ? 99 71 ? 35 99 ? 47 35 ? 79 35 ? 63 35 ? 5 35 ? 77 35 ? 96 35 ? 51 96 ? 94 96 ? 97 96 ? 59 96 ? 8 59 ? 28 59 ? 43 59 ? 45 43 ? 84 43 ? 25 43 ? 40 43 ? 18 43 ? 75 18 ? 88 75 ? 60 75 ? 52 75 ? 56 75...
result:
ok Primes are found successfully with S = 446350 queries total