QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#321001 | #8214. Huge Oil Platform | ucup-team296# | TL | 1ms | 2392kb | Rust | 45.5kb | 2024-02-04 01:58:23 | 2024-02-04 01:58:25 |
Judging History
answer
//
pub mod solution {
//{"name":"h","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""},{"input":"","output":""},{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"h"}}}
#[allow(unused)]
use crate::dbg;
use crate::algo_lib::geometry::point::PointT;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::seg_trees::lazy_seg_tree::SegTree;
use crate::algo_lib::seg_trees::seg_tree_trait::SegTreeNode;
type Point = PointT<i64>;
#[derive(Clone, Copy, Debug)]
struct Node {
pref: f64,
suf: f64,
all: f64,
max: f64,
}
const INF: f64 = -1e18;
impl Default for Node {
fn default() -> Self {
Self {
pref: INF,
suf: INF,
all: 0.0,
max: 0.0,
}
}
}
impl SegTreeNode for Node {
fn join_nodes(l: &Self, r: &Self, _context: &Self::Context) -> Self {
Self {
pref: (l.pref + r.all).max(r.pref),
suf: (r.suf + l.all).max(l.suf),
all: l.all + r.all,
max: l.max.max(r.max).max(l.pref + r.suf),
}
}
fn apply_update(node: &mut Self, update: &Self::Update) {
todo!()
}
fn join_updates(current: &mut Self::Update, add: &Self::Update) {
todo!()
}
type Update = ();
type Context = ();
}
fn calc_abc(p: Point, q: Point) -> (i64, i64, i64) {
let a = q.x - p.x;
let b = q.y - p.y;
let c = -a * p.x - b * p.y;
(a, b, c)
}
fn solve(input: &mut Input, out: &mut Output, _test_case: usize) {
let n = input.usize();
let mut pts = vec![];
let mut w = vec![];
for _ in 0..n {
pts.push(Point::new(input.i64(), input.i64()));
w.push(input.f64());
}
let mut res = 0.0f64;
for i in 0..n {
res = res.max(w[i]);
}
let mut x_pos = vec![usize::MAX; n];
const INF: f64 = -1e18;
let empty_node = Node {
pref: INF,
suf: INF,
all: 0.0,
max: 0.0,
};
let mut st = vec![empty_node; 1024];
let mut inside = vec![];
let mut calc = |p: Point, q: Point| -> f64 {
inside.clear();
for node in st.iter_mut() {
*node = empty_node;
}
let q2 = p + (q - p).rotate_ccw();
let (a, b, c) = calc_abc(p, q2);
for i in 0..n {
let dy = pts[i].x * a + pts[i].y * b + c;
if dy >= 0 {
inside.push(i);
}
}
let (ax, bx, cx) = calc_abc(p, q);
inside.sort_by_key(|&i| pts[i].x * ax + pts[i].y * bx);
for idx in 0..inside.len() {
x_pos[inside[idx]] = idx;
}
let (ay, by, cy) = calc_abc(p, q2);
inside.sort_by_key(|&i| pts[i].x * ay + pts[i].y * by);
let mut res = 0.0f64;
let x_coef = 1.0 / (Point::dist2(&p, &q) as f64).sqrt();
let y_coef = 1.0 / (Point::dist2(&p, &q2) as f64).sqrt();
// let mut st = SegTree::new(1024, |_| empty_node);
for &i in inside.iter() {
let mut real_x = (pts[i].x * ax + pts[i].y * bx) as f64;
real_x *= x_coef;
let mut real_y = (pts[i].x * ay + pts[i].y * by + cy) as f64;
real_y *= y_coef;
// let new_node = Node {
// pref: w[i] + 2.0 * real_x,
// suf: w[i] - 2.0 * real_x,
// all: w[i],
// max: w[i],
// };
// st.update_point(x_pos[i], new_node);
let mut cur = 511 + x_pos[i];
st[cur] = Node {
pref: w[i] + 2.0 * real_x,
suf: w[i] - 2.0 * real_x,
all: w[i],
max: w[i],
};
while cur > 0 {
cur = (cur - 1) / 2;
st[cur] = Node::join_nodes(&st[cur * 2 + 1], &st[cur * 2 + 2], &());
}
let cur_res = st[0].max - 2.0 * real_y;
res = res.max(cur_res);
}
res
};
for i in 0..n {
for j in 0..n {
if i == j {
continue;
}
{
let cur = calc(pts[i], pts[j]);
res = res.max(cur);
}
{
let dir = (pts[j] - pts[i]).rotate_ccw();
let nq = pts[i] - dir;
let cur = calc(pts[i], pts[i] + nq);
res = res.max(cur);
}
}
}
out.println(res);
}
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
solve(&mut input, &mut output, 1);
output.flush();
true
}
}
pub mod algo_lib {
pub mod collections {
pub mod array_2d {
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use crate::algo_lib::misc::num_traits::Number;
use std::io::Write;
use std::ops::Index;
use std::ops::IndexMut;
use std::ops::Mul;
// TODO: implement good Debug
#[derive(Clone, Debug)]
pub struct Array2D<T> {
rows: usize,
cols: usize,
v: Vec<T>,
}
pub struct Iter<'a, T> {
array: &'a Array2D<T>,
row: usize,
col: usize,
}
impl<T> Array2D<T>
where
T: Clone,
{
#[allow(unused)]
pub fn new(empty: T, rows: usize, cols: usize) -> Self {
Self {
rows,
cols,
v: vec![empty; rows * cols],
}
}
pub fn new_f(rows: usize, cols: usize, mut f: impl FnMut(usize, usize) -> T) -> Self {
let mut v = Vec::with_capacity(rows * cols);
for r in 0..rows {
for c in 0..cols {
v.push(f(r, c));
}
}
Self { rows, cols, v }
}
pub fn rows(&self) -> usize {
self.rows
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.rows()
}
pub fn cols(&self) -> usize {
self.cols
}
pub fn swap(&mut self, row1: usize, row2: usize) {
assert!(row1 < self.rows);
assert!(row2 < self.rows);
if row1 != row2 {
for col in 0..self.cols {
self.v.swap(row1 * self.cols + col, row2 * self.cols + col);
}
}
}
pub fn transpose(&self) -> Self {
Self::new_f(self.cols, self.rows, |r, c| self[c][r].clone())
}
pub fn iter(&self) -> Iter<T> {
Iter {
array: self,
row: 0,
col: 0,
}
}
pub fn pref_sum(&self) -> Self
where
T: Number,
{
let mut res = Self::new(T::ZERO, self.rows + 1, self.cols + 1);
for i in 0..self.rows {
for j in 0..self.cols {
let value = self[i][j] + res[i][j + 1] + res[i + 1][j] - res[i][j];
res[i + 1][j + 1] = value;
}
}
res
}
}
impl<T> Writable for Array2D<T>
where
T: Writable,
{
fn write(&self, output: &mut Output) {
for r in 0..self.rows {
self[r].write(output);
output.write_all(&[b'\n']).unwrap();
}
}
}
impl<T> Index<usize> for Array2D<T> {
type Output = [T];
fn index(&self, index: usize) -> &Self::Output {
&self.v[(index) * self.cols..(index + 1) * self.cols]
}
}
impl<T> IndexMut<usize> for Array2D<T> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.v[(index) * self.cols..(index + 1) * self.cols]
}
}
impl<T> Mul for &Array2D<T>
where
T: Number,
{
type Output = Array2D<T>;
fn mul(self, rhs: Self) -> Self::Output {
let n = self.rows;
let m = self.cols;
assert_eq!(m, rhs.rows);
let k2 = rhs.cols;
let mut res = Array2D::new(T::ZERO, n, k2);
for i in 0..n {
for j in 0..m {
for k in 0..k2 {
res[i][k] += self[i][j] * rhs[j][k];
}
}
}
res
}
}
impl<T> Array2D<T>
where
T: Number,
{
pub fn pown(&self, pw: usize) -> Self {
assert_eq!(self.rows, self.cols);
let n = self.rows;
if pw == 0 {
Self::new_f(n, n, |r, c| if r == c { T::ONE } else { T::ZERO })
} else if pw == 1 {
self.clone()
} else {
let half = self.pown(pw / 2);
let half2 = &half * ½
if pw & 1 == 0 {
half2
} else {
&half2 * self
}
}
}
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
if self.col == self.array.cols {
self.col = 0;
self.row += 1;
}
if self.row >= self.array.rows {
return None;
}
let elem = &self.array[self.row][self.col];
self.col += 1;
Some(elem)
}
}
}
}
pub mod geometry {
pub mod point {
use crate::algo_lib::collections::array_2d::Array2D;
use crate::f;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use crate::algo_lib::iters::shifts::Shift;
use crate::algo_lib::misc::num_traits::Number;
use crate::algo_lib::misc::ord_f64::OrdF64;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Mul;
use std::ops::Sub;
use std::ops::SubAssign;
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Default)]
pub struct PointT<T: Number> {
pub x: T,
pub y: T,
}
impl<T: Ord + Number> Ord for PointT<T> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.x.cmp(&other.x).then(self.y.cmp(&other.y))
}
}
impl<T: Ord + Number> PartialOrd for PointT<T> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.cmp(other).into()
}
}
impl<T: Number> PointT<T> {
pub fn new(x: T, y: T) -> Self {
Self { x, y }
}
pub fn dist2(&self, p2: &PointT<T>) -> T {
let dx = self.x - p2.x;
let dy = self.y - p2.y;
dx * dx + dy * dy
}
pub fn side(&self) -> i32 {
if self.y > T::ZERO || (self.y == T::ZERO && self.x >= T::ZERO) {
return 0;
}
1
}
pub fn dist_manh(&self, p2: &PointT<T>) -> T {
let dx = self.x - p2.x;
let dy = self.y - p2.y;
let dx_abs = if dx < T::ZERO { T::ZERO - dx } else { dx };
let dy_abs = if dy < T::ZERO { T::ZERO - dy } else { dy };
dx_abs + dy_abs
}
pub fn angle_to(&self, other: &PointT<T>) -> OrdF64
where
f64: From<T>,
{
let dy = other.y - self.y;
let dx = other.x - self.x;
OrdF64(f64::atan2(dy.into(), dx.into()))
}
pub fn swap_x_y(&self) -> Self {
Self::new(self.y, self.x)
}
pub fn vect_mul(p1: &PointT<T>, p2: &PointT<T>, p3: &PointT<T>) -> T {
(p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x)
}
pub fn scal_mul(p1: &PointT<T>, p2: &PointT<T>, p3: &PointT<T>) -> T {
Self::scal_mul2(&(*p2 - *p1), &(*p3 - *p1))
}
pub fn scal_mul2(p1: &PointT<T>, p2: &PointT<T>) -> T {
p1.x * p2.x + p1.y * p2.y
}
pub fn vect_mul2(p1: &PointT<T>, p2: &PointT<T>) -> T {
p1.x * p2.y - p1.y * p2.x
}
pub fn apply_shift(&self, shift: &Shift) -> Self {
Self {
x: self.x + T::from_i32(shift.dx),
y: self.y + T::from_i32(shift.dy),
}
}
pub fn shift(&self, dx: T, dy: T) -> Self {
Self {
x: self.x + dx,
y: self.y + dy,
}
}
pub fn scale(&self, coef: T) -> Self {
Self {
x: self.x * coef,
y: self.y * coef,
}
}
pub fn index_vec2d<'a, Elem>(&self, arr: &'a [Vec<Elem>]) -> Option<&'a Elem> {
if self.x >= T::ZERO
&& self.x < T::from_i32(arr.len() as i32)
&& self.y >= T::ZERO
&& self.y < T::from_i32(arr[T::to_i32(self.x) as usize].len() as i32)
{
let x = T::to_i32(self.x) as usize;
let y = T::to_i32(self.y) as usize;
Some(&arr[x][y])
} else {
None
}
}
pub fn index_arr2d<'a, Elem>(&self, arr: &'a Array2D<Elem>) -> Option<&'a Elem>
where
Elem: Clone,
{
if self.x >= T::ZERO
&& self.x < T::from_i32(arr.len() as i32)
&& self.y >= T::ZERO
&& self.y < T::from_i32(arr[T::to_i32(self.x) as usize].len() as i32)
{
let x = T::to_i32(self.x) as usize;
let y = T::to_i32(self.y) as usize;
Some(&arr[x][y])
} else {
None
}
}
pub fn rotate_ccw(&self) -> Self {
Self::new(T::ZERO - self.y, self.x)
}
pub const ZERO: PointT<T> = PointT {
x: T::ZERO,
y: T::ZERO,
};
pub fn conv_float(&self) -> PointT<OrdF64> {
PointT::new(OrdF64(self.x.to_f64()), OrdF64(self.y.to_f64()))
}
}
impl<T> Add for PointT<T>
where
T: Number,
{
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self::new(self.x + rhs.x, self.y + rhs.y)
}
}
impl<T> AddAssign for PointT<T>
where
T: Number,
{
fn add_assign(&mut self, rhs: Self) {
self.x += rhs.x;
self.y += rhs.y;
}
}
impl<T> Sub for PointT<T>
where
T: Number,
{
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self::new(self.x - rhs.x, self.y - rhs.y)
}
}
impl<T> SubAssign for PointT<T>
where
T: Number,
{
fn sub_assign(&mut self, rhs: Self) {
self.x -= rhs.x;
self.y -= rhs.y;
}
}
impl<T> Readable for PointT<T>
where
T: Number + Readable,
{
fn read(input: &mut Input) -> Self {
let x = input.read();
let y = input.read();
Self { x, y }
}
}
impl<T> Writable for PointT<T>
where
T: Number + Writable,
{
fn write(&self, output: &mut Output) {
self.x.write(output);
output.put(b' ');
self.y.write(output);
}
}
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct PointWithIdT<T: Number> {
pub p: PointT<T>,
id: u32,
}
impl<T> PointWithIdT<T>
where
T: Number,
{
pub fn new(p: PointT<T>, id: usize) -> Self {
Self { p, id: id as u32 }
}
pub fn id(&self) -> usize {
self.id as usize
}
}
impl PointWithIdT<OrdF64> {
pub fn dist(&self, other: &Self) -> OrdF64 {
self.p.dist2(&other.p).sqrt()
}
}
impl PointT<OrdF64> {
pub fn rotate_ccw_angle(&self, angle: OrdF64) -> Self {
let cos = f!(angle.0.cos());
let sin = f!(angle.0.sin());
let x = self.x * cos - self.y * sin;
let y = self.y * cos + self.x * sin;
Self { x, y }
}
}
impl Mul<OrdF64> for PointT<OrdF64> {
type Output = PointT<OrdF64>;
fn mul(self, rhs: OrdF64) -> Self::Output {
Self {
x: self.x * rhs,
y: self.y * rhs,
}
}
}
}
}
pub mod io {
pub mod input {
use std::fmt::Debug;
use std::io::Read;
use std::marker::PhantomData;
use std::path::Path;
use std::str::FromStr;
pub struct Input {
input: Box<dyn Read>,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_integer_fun {
($t:ident) => {
#[allow(unused)]
pub fn $t(&mut self) -> $t {
self.read_integer()
}
};
}
impl Input {
const DEFAULT_BUF_SIZE: usize = 4096;
///
/// Using with stdin:
/// ```no_run
/// use algo_lib::io::input::Input;
/// let stdin = std::io::stdin();
/// let input = Input::new(Box::new(stdin));
/// ```
///
/// For read files use ``new_file`` instead.
///
///
pub fn new(input: Box<dyn Read>) -> Self {
Self {
input,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
buf_read: 0,
}
}
pub fn new_stdin() -> Self {
let stdin = std::io::stdin();
Self::new(Box::new(stdin))
}
pub fn new_file<P: AsRef<Path>>(path: P) -> Self {
let file = std::fs::File::open(&path)
.unwrap_or_else(|_| panic!("Can't open file: {:?}", path.as_ref().as_os_str()));
Self::new(Box::new(file))
}
pub fn new_with_size(input: Box<dyn Read>, buf_size: usize) -> Self {
Self {
input,
buf: vec![0; buf_size],
at: 0,
buf_read: 0,
}
}
pub fn new_file_with_size<P: AsRef<Path>>(path: P, buf_size: usize) -> Self {
let file = std::fs::File::open(&path)
.unwrap_or_else(|_| panic!("Can't open file: {:?}", path.as_ref().as_os_str()));
Self::new_with_size(Box::new(file), buf_size)
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
Some(self.buf[self.at])
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
pub fn has_more_elements(&mut self) -> bool {
!self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0usize..size {
res.push(self.read());
}
res
}
pub fn string_vec(&mut self, size: usize) -> Vec<Vec<u8>> {
let mut res = Vec::with_capacity(size);
for _ in 0usize..size {
res.push(self.string());
}
res
}
pub fn read_line(&mut self) -> String {
let mut res = String::new();
while let Some(c) = self.get() {
if c == b'\n' {
break;
}
if c == b'\r' {
if self.peek() == Some(b'\n') {
self.get();
}
break;
}
res.push(c.into());
}
res
}
#[allow(clippy::should_implement_trait)]
pub fn into_iter<T: Readable>(self) -> InputIterator<T> {
InputIterator {
input: self,
phantom: Default::default(),
}
}
fn read_integer<T: FromStr>(&mut self) -> T
where
<T as FromStr>::Err: Debug,
{
let res = self.read_string();
res.parse::<T>().unwrap()
}
fn read_string(&mut self) -> String {
match self.next_token() {
None => {
panic!("Input exhausted");
}
Some(res) => unsafe { String::from_utf8_unchecked(res) },
}
}
pub fn string_as_string(&mut self) -> String {
self.read_string()
}
pub fn string(&mut self) -> Vec<u8> {
self.read_string().into_bytes()
}
fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
fn read_float(&mut self) -> f64 {
self.read_string().parse().unwrap()
}
pub fn f64(&mut self) -> f64 {
self.read_float()
}
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
read_integer_fun!(i32);
read_integer_fun!(i64);
read_integer_fun!(i128);
read_integer_fun!(u32);
read_integer_fun!(u64);
read_integer_fun!(usize);
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for String {
fn read(input: &mut Input) -> Self {
input.read_string()
}
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl Readable for f64 {
fn read(input: &mut Input) -> Self {
input.read_string().parse().unwrap()
}
}
impl Readable for f32 {
fn read(input: &mut Input) -> Self {
input.read_string().parse().unwrap()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.vec(size)
}
}
pub struct InputIterator<T: Readable> {
input: Input,
phantom: PhantomData<T>,
}
impl<T: Readable> Iterator for InputIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.input.skip_whitespace();
self.input.peek().map(|_| self.input.read())
}
}
macro_rules! read_integer {
($t:ident) => {
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.read_integer()
}
}
};
}
read_integer!(i8);
read_integer!(i16);
read_integer!(i32);
read_integer!(i64);
read_integer!(i128);
read_integer!(isize);
read_integer!(u8);
read_integer!(u16);
read_integer!(u32);
read_integer!(u64);
read_integer!(u128);
read_integer!(usize);
}
pub mod output {
use std::io::Write;
pub struct Output {
output: Box<dyn Write>,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
}
impl Output {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: Box<dyn Write>) -> Self {
Self {
output,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
auto_flush: false,
}
}
pub fn new_stdout() -> Self {
let stdout = std::io::stdout();
Self::new(Box::new(stdout))
}
pub fn new_file(path: impl AsRef<std::path::Path>) -> Self {
let file = std::fs::File::create(path).unwrap();
Self::new(Box::new(file))
}
pub fn new_with_auto_flush(output: Box<dyn Write>) -> Self {
Self {
output,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
auto_flush: true,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.at = 0;
self.output.flush().expect("Couldn't flush output");
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
}
pub fn println<T: Writable>(&mut self, s: T) {
s.write(self);
self.put(b'\n');
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_iter_ref<'a, T: 'a + Writable, I: Iterator<Item = &'a T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
}
impl Write for Output {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
if self.auto_flush {
self.flush();
}
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self[..].write(output);
}
}
macro_rules! write_to_string {
($t:ident) => {
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
};
}
write_to_string!(u8);
write_to_string!(u16);
write_to_string!(u32);
write_to_string!(u64);
write_to_string!(u128);
write_to_string!(usize);
write_to_string!(i8);
write_to_string!(i16);
write_to_string!(i32);
write_to_string!(i64);
write_to_string!(i128);
write_to_string!(isize);
write_to_string!(f32);
write_to_string!(f64);
impl<T: Writable, U: Writable> Writable for (T, U) {
fn write(&self, output: &mut Output) {
self.0.write(output);
output.put(b' ');
self.1.write(output);
}
}
impl<T: Writable, U: Writable, V: Writable> Writable for (T, U, V) {
fn write(&self, output: &mut Output) {
self.0.write(output);
output.put(b' ');
self.1.write(output);
output.put(b' ');
self.2.write(output);
}
}
}
}
pub mod iters {
pub mod shifts {
#[derive(Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
pub struct Shift {
pub dx: i32,
pub dy: i32,
}
impl Shift {
pub fn rev(&self) -> Self {
Self {
dx: -self.dx,
dy: -self.dy,
}
}
}
// x goes down
// y goes right
pub const SHIFT_DOWN: Shift = Shift { dx: 1, dy: 0 };
pub const SHIFT_UP: Shift = Shift { dx: -1, dy: 0 };
pub const SHIFT_RIGHT: Shift = Shift { dx: 0, dy: 1 };
pub const SHIFT_LEFT: Shift = Shift { dx: 0, dy: -1 };
pub const SHIFTS_4: [Shift; 4] = [SHIFT_DOWN, SHIFT_LEFT, SHIFT_UP, SHIFT_RIGHT];
pub const SHIFTS_8: [Shift; 8] = [
SHIFT_DOWN,
SHIFT_LEFT,
SHIFT_UP,
SHIFT_RIGHT,
Shift { dx: -1, dy: -1 },
Shift { dx: -1, dy: 1 },
Shift { dx: 1, dy: -1 },
Shift { dx: 1, dy: 1 },
];
pub const SHIFTS_9: [Shift; 9] = [
SHIFT_DOWN,
SHIFT_LEFT,
SHIFT_UP,
SHIFT_RIGHT,
Shift { dx: -1, dy: -1 },
Shift { dx: -1, dy: 1 },
Shift { dx: 1, dy: -1 },
Shift { dx: 1, dy: 1 },
Shift { dx: 0, dy: 0 },
];
pub fn shift_by_nswe(c: u8) -> Shift {
match c {
b'S' | b's' => SHIFT_DOWN,
b'N' | b'n' => SHIFT_UP,
b'E' | b'e' => SHIFT_RIGHT,
b'W' | b'w' => SHIFT_LEFT,
_ => panic!("Unexpected direction!"),
}
}
pub fn shift_by_uldr(c: u8) -> Shift {
match c {
b'D' | b'd' => SHIFT_DOWN,
b'U' | b'u' => SHIFT_UP,
b'R' | b'r' => SHIFT_RIGHT,
b'L' | b'l' => SHIFT_LEFT,
_ => panic!("Unexpected direction!"),
}
}
}
}
pub mod misc {
pub mod dbg_macro {
#[macro_export]
#[allow(unused_macros)]
macro_rules! dbg {
($first_val:expr, $($val:expr),+ $(,)?) => {
eprint!("[{}:{}] {} = {:?}",
file!(), line!(), stringify!($first_val), &$first_val);
($(eprint!(", {} = {:?}", stringify!($val), &$val)),+,);
eprintln!();
};
($first_val:expr) => {
eprintln!("[{}:{}] {} = {:?}",
file!(), line!(), stringify!($first_val), &$first_val)
};
}
}
pub mod num_traits {
use std::cmp::Ordering;
use std::fmt::Debug;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait HasConstants<T> {
const MAX: T;
const MIN: T;
const ZERO: T;
const ONE: T;
const TWO: T;
}
pub trait ConvSimple<T> {
fn from_i32(val: i32) -> T;
fn to_i32(self) -> i32;
fn to_f64(self) -> f64;
}
pub trait Signum {
fn signum(&self) -> i32;
}
pub trait Number:
Copy
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ PartialOrd
+ PartialEq
+ HasConstants<Self>
+ Default
+ Debug
+ Sized
+ ConvSimple<Self>
{
}
impl<
T: Copy
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ PartialOrd
+ PartialEq
+ HasConstants<Self>
+ Default
+ Debug
+ Sized
+ ConvSimple<Self>,
> Number for T
{
}
macro_rules! has_constants_impl {
($t: ident) => {
impl HasConstants<$t> for $t {
// TODO: remove `std` for new rust version..
const MAX: $t = std::$t::MAX;
const MIN: $t = std::$t::MIN;
const ZERO: $t = 0;
const ONE: $t = 1;
const TWO: $t = 2;
}
impl ConvSimple<$t> for $t {
fn from_i32(val: i32) -> $t {
val as $t
}
fn to_i32(self) -> i32 {
self as i32
}
fn to_f64(self) -> f64 {
self as f64
}
}
};
}
has_constants_impl!(i32);
has_constants_impl!(i64);
has_constants_impl!(i128);
has_constants_impl!(u32);
has_constants_impl!(u64);
has_constants_impl!(u128);
has_constants_impl!(usize);
has_constants_impl!(u8);
impl ConvSimple<Self> for f64 {
fn from_i32(val: i32) -> Self {
val as f64
}
fn to_i32(self) -> i32 {
self as i32
}
fn to_f64(self) -> f64 {
self
}
}
impl HasConstants<Self> for f64 {
const MAX: Self = Self::MAX;
const MIN: Self = -Self::MAX;
const ZERO: Self = 0.0;
const ONE: Self = 1.0;
const TWO: Self = 2.0;
}
impl<T: Number + Ord> Signum for T {
fn signum(&self) -> i32 {
match self.cmp(&T::ZERO) {
Ordering::Greater => 1,
Ordering::Less => -1,
Ordering::Equal => 0,
}
}
}
}
pub mod ord_f64 {
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use crate::algo_lib::misc::num_traits::ConvSimple;
use crate::algo_lib::misc::num_traits::HasConstants;
use std::cmp::min;
use std::cmp::Ordering;
use std::f64::consts::PI;
use std::fmt::Debug;
use std::fmt::Display;
use std::fmt::Formatter;
use std::io::Write;
use std::num::ParseFloatError;
use std::ops::Neg;
use std::ops::Rem;
use std::str::FromStr;
#[derive(PartialEq, Copy, Clone, Default)]
pub struct OrdF64(pub f64);
impl OrdF64 {
pub const EPS: Self = Self(1e-9);
pub const SMALL_EPS: Self = Self(1e-4);
pub const PI: Self = Self(PI);
pub fn abs(&self) -> Self {
Self(self.0.abs())
}
pub fn eq_with_eps(&self, other: &Self, eps: Self) -> bool {
let abs_diff = (*self - *other).abs();
abs_diff <= eps || abs_diff <= min(self.abs(), other.abs()) * eps
}
pub fn eq_with_default_eps(&self, other: &Self) -> bool {
self.eq_with_eps(other, Self::EPS)
}
pub fn sqrt(&self) -> Self {
Self(self.0.sqrt())
}
pub fn powf(&self, n: f64) -> Self {
Self(self.0.powf(n))
}
}
impl Eq for OrdF64 {}
impl Ord for OrdF64 {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).unwrap()
}
}
impl PartialOrd for OrdF64 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl std::ops::Add for OrdF64 {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl std::ops::AddAssign for OrdF64 {
fn add_assign(&mut self, rhs: Self) {
self.0 += rhs.0;
}
}
impl std::ops::Sub for OrdF64 {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self(self.0 - rhs.0)
}
}
impl std::ops::SubAssign for OrdF64 {
fn sub_assign(&mut self, rhs: Self) {
self.0 -= rhs.0;
}
}
impl std::ops::Mul for OrdF64 {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self(self.0 * rhs.0)
}
}
impl std::ops::MulAssign for OrdF64 {
fn mul_assign(&mut self, rhs: Self) {
self.0 *= rhs.0;
}
}
impl std::ops::Div for OrdF64 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
Self(self.0 / rhs.0)
}
}
impl std::ops::DivAssign for OrdF64 {
fn div_assign(&mut self, rhs: Self) {
self.0 /= rhs.0;
}
}
impl Neg for OrdF64 {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
impl Display for OrdF64 {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(&self.0, f)
}
}
impl Debug for OrdF64 {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl Writable for OrdF64 {
fn write(&self, output: &mut Output) {
output.write_fmt(format_args!("{}", self.0)).unwrap();
}
}
impl Readable for OrdF64 {
fn read(input: &mut Input) -> Self {
Self(input.read::<f64>())
}
}
impl HasConstants<Self> for OrdF64 {
const MAX: Self = Self(f64::MAX);
const MIN: Self = Self(-f64::MAX);
const ZERO: Self = Self(0.0);
const ONE: Self = Self(1.0);
const TWO: Self = Self(2.0);
}
impl ConvSimple<Self> for OrdF64 {
fn from_i32(val: i32) -> Self {
Self(val as f64)
}
fn to_i32(self) -> i32 {
self.0 as i32
}
fn to_f64(self) -> f64 {
self.0
}
}
impl FromStr for OrdF64 {
type Err = ParseFloatError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s.parse::<f64>() {
Ok(value) => Ok(Self(value)),
Err(error) => Err(error),
}
}
}
impl From<OrdF64> for f64 {
fn from(x: OrdF64) -> Self {
x.0
}
}
impl Rem for OrdF64 {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
Self(self.0 % rhs.0)
}
}
#[macro_export]
macro_rules! f {
($a:expr) => {
OrdF64($a)
};
}
impl From<usize> for OrdF64 {
fn from(x: usize) -> Self {
f!(x as f64)
}
}
impl From<i32> for OrdF64 {
fn from(x: i32) -> Self {
f!(x as f64)
}
}
impl From<i64> for OrdF64 {
fn from(x: i64) -> Self {
f!(x as f64)
}
}
impl From<f64> for OrdF64 {
fn from(x: f64) -> Self {
f!(x)
}
}
}
}
pub mod seg_trees {
pub mod lazy_seg_tree {
use std::ops::Range;
use crate::algo_lib::seg_trees::seg_tree_trait::SegTreeNode;
///
/// Segment Tree
///
#[allow(unused)]
#[derive(Clone)]
pub struct SegTree<T: SegTreeNode> {
n: usize,
tree: Vec<T>,
updates_to_push: Vec<Option<T::Update>>,
context: T::Context,
right_nodes: Vec<usize>,
}
#[allow(unused)]
impl<T: SegTreeNode> SegTree<T> {
fn pull(&mut self, v: usize, vr: usize) {
self.tree[v] = T::join_nodes(&self.tree[v + 1], &self.tree[vr], &self.context);
}
fn build(&mut self, v: usize, l: usize, r: usize, init_val: &T) {
if l + 1 == r {
self.tree[v] = init_val.clone();
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.build(v + 1, l, m, init_val);
self.build(vr, m, r, init_val);
self.pull(v, vr);
}
}
fn push(&mut self, v: usize, l: usize, r: usize) {
let update = self.updates_to_push[v].clone();
self.updates_to_push[v] = None;
match update {
None => {}
Some(update) => {
let m = (l + r) >> 1;
self.apply_update(v + 1, &update, m - l == 1);
self.apply_update(v + ((r - l) & !1), &update, r - m == 1);
}
}
}
fn get_(&mut self, v: usize, l: usize, r: usize, ql: usize, qr: usize) -> T {
assert!(qr >= l);
assert!(ql < r);
if ql <= l && r <= qr {
return self.tree[v].clone();
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
let res = if ql >= m {
self.get_(vr, m, r, ql, qr)
} else if qr <= m {
self.get_(v + 1, l, m, ql, qr)
} else {
T::join_nodes(
&self.get_(v + 1, l, m, ql, qr),
&self.get_(vr, m, r, ql, qr),
&self.context,
)
};
self.pull(v, vr);
res
}
fn join_updates(current: &mut Option<T::Update>, add: &T::Update) {
match current {
None => *current = Some(add.clone()),
Some(current) => T::join_updates(current, add),
};
}
fn apply_update(&mut self, v: usize, update: &T::Update, is_leaf: bool) {
T::apply_update(&mut self.tree[v], update);
if !is_leaf {
Self::join_updates(&mut self.updates_to_push[v], update);
}
}
fn modify_(&mut self, v: usize, l: usize, r: usize, ql: usize, qr: usize, update: &T::Update) {
assert!(qr >= l);
assert!(ql < r);
if ql <= l && r <= qr {
self.apply_update(v, update, r - l == 1);
return;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
if ql >= m {
self.modify_(vr, m, r, ql, qr, update);
} else if qr <= m {
self.modify_(v + 1, l, m, ql, qr, update);
} else {
self.modify_(v + 1, l, m, ql, qr, update);
self.modify_(vr, m, r, ql, qr, update);
};
self.pull(v, vr);
}
pub fn update(&mut self, range: Range<usize>, update: T::Update) {
if range.is_empty() {
return;
}
assert!(!range.is_empty());
self.modify_(0, 0, self.n, range.start, range.end, &update);
}
pub fn update_point(&mut self, pos: usize, new_node: T) {
let mut l = 0;
let mut r = self.n;
let mut v: usize = 0;
let mut to_pull = vec![];
while r - l > 1 {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
to_pull.push((v, vr));
if pos < m {
r = m;
v = v + 1;
} else {
l = m;
v = vr;
}
}
self.tree[v] = new_node;
for (v, vr) in to_pull.into_iter().rev() {
self.pull(v, vr);
}
}
fn find_last_true_(
&mut self,
v: usize,
l: usize,
r: usize,
range: Range<usize>,
f: &impl Fn(&T) -> bool,
) -> Option<usize> {
if range.start >= r || l >= range.end {
return None;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
if range.start <= l && r <= range.end {
if !f(&self.tree[v]) {
return None;
}
if r - l == 1 {
return Some(l);
}
}
self.push(v, l, r);
if let Some(res) = self.find_last_true_(vr, m, r, range.clone(), f) {
Some(res)
} else {
self.find_last_true_(v + 1, l, m, range, f)
}
}
// returns position
pub fn find_last_true(&mut self, range: Range<usize>, f: impl Fn(&T) -> bool) -> Option<usize> {
self.find_last_true_(0, 0, self.n, range, &f)
}
pub fn get(&mut self, range: Range<usize>) -> T {
if range.is_empty() {
return T::default();
}
self.get_(0, 0, self.n, range.start, range.end)
}
pub fn new_with_context(n: usize, f: impl Fn(usize) -> T, context: T::Context) -> Self {
assert!(n > 0);
let tree = vec![T::default(); 2 * n - 1];
let updates_to_push = vec![None; 2 * n - 1];
let mut res = SegTree {
n,
tree,
updates_to_push,
context,
right_nodes: vec![],
};
res.build_f(0, 0, n, &f);
res
}
pub fn new(n: usize, f: impl Fn(usize) -> T) -> Self
where
T::Context: Default,
{
assert!(n > 0);
let tree = vec![T::default(); 2 * n - 1];
let updates_to_push = vec![None; 2 * n - 1];
let mut res = SegTree {
n,
tree,
updates_to_push,
context: T::Context::default(),
right_nodes: vec![],
};
res.build_f(0, 0, n, &f);
res
}
fn build_f(&mut self, v: usize, l: usize, r: usize, f: &impl Fn(usize) -> T) {
if l + 1 == r {
self.tree[v] = f(l);
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.build_f(v + 1, l, m, f);
self.build_f(vr, m, r, f);
self.pull(v, vr);
}
}
pub fn len(&self) -> usize {
self.n
}
pub fn expert_get_node(&self, node: usize) -> &T {
&self.tree[node]
}
pub fn expert_get_left_node(&self, node: usize) -> usize {
node + 1
}
fn build_right_nodes(&mut self, v: usize, l: usize, r: usize) {
if l + 1 == r {
self.right_nodes.push(0);
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.right_nodes.push(vr);
self.build_right_nodes(v + 1, l, m);
self.build_right_nodes(vr, m, r);
}
}
// TODO: shouldn't be mut
pub fn expert_get_right_node(&mut self, node: usize) -> usize {
if self.right_nodes.is_empty() {
self.build_right_nodes(0, 0, self.n);
}
self.right_nodes[node]
}
// Used for Kinetic Seg Tree
pub fn expert_rebuild_nodes(&mut self, should_rebuild: impl Fn(&T, &T::Context) -> bool) {
self.expert_rebuild_nodes_(0, 0, self.n, &should_rebuild);
}
fn expert_rebuild_nodes_(
&mut self,
v: usize,
l: usize,
r: usize,
should_rebuild: &impl Fn(&T, &T::Context) -> bool,
) {
if r - l <= 1 || !should_rebuild(&self.tree[v], &self.context) {
return;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
self.expert_rebuild_nodes_(v + 1, l, m, should_rebuild);
self.expert_rebuild_nodes_(vr, m, r, should_rebuild);
self.pull(v, vr);
}
pub fn update_context(&mut self, f: impl Fn(&mut T::Context)) {
f(&mut self.context);
}
pub fn get_context(&self) -> &T::Context {
&self.context
}
}
}
pub mod seg_tree_trait {
pub trait SegTreeNode: Clone + Default {
fn join_nodes(l: &Self, r: &Self, context: &Self::Context) -> Self;
fn apply_update(node: &mut Self, update: &Self::Update);
fn join_updates(current: &mut Self::Update, add: &Self::Update);
type Update: Clone;
type Context;
}
}
}
}
fn main() {
let input = algo_lib::io::input::Input::new_stdin();
let mut output = algo_lib::io::output::Output::new_stdout();
crate::solution::run(input, output);
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 2388kb
input:
2 1 1 1 3 3 1
output:
1
result:
ok found '1.0000000', expected '1.0000000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 2392kb
input:
3 4 5 5 4 6 7 1 3 8
output:
10.100505063388333
result:
ok found '10.1005051', expected '10.1005051', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 2152kb
input:
2 0 0 1 1000000 1000000 1000000000
output:
1000000000
result:
ok found '1000000000.0000000', expected '1000000000.0000000', error '0.0000000'
Test #4:
score: 0
Accepted
time: 1ms
memory: 2156kb
input:
20 328 207 21 365 145 188 347 79 41 374 335 699 288 250 97 32 267 131 296 332 434 2 91 36 139 43 21 26 455 696 57 135 410 14 500 396 255 181 646 103 114 593 309 351 787 207 316 138 440 416 806 413 349 695 413 201 501 455 396 442
output:
6092.442712623782
result:
ok found '6092.4427126', expected '6092.4427126', error '0.0000000'
Test #5:
score: 0
Accepted
time: 1ms
memory: 2312kb
input:
20 38 207 766 202 485 964 257 466 900 205 486 738 166 53 716 61 94 881 252 165 182 63 292 612 225 278 242 224 242 566 381 196 702 56 494 997 268 288 884 379 227 3 357 271 975 55 73 678 260 55 623 399 369 515 116 354 580 404 239 950
output:
11878.257312827458
result:
ok found '11878.2573128', expected '11878.2573128', error '0.0000000'
Test #6:
score: 0
Accepted
time: 1ms
memory: 2176kb
input:
20 249 215 320 38 48 229 457 366 56 36 142 186 44 96 935 97 190 143 215 218 123 116 486 291 304 232 463 429 297 29 479 475 97 97 198 405 69 395 121 381 121 926 137 197 972 410 91 218 87 421 737 117 390 144 319 287 170 353 302 754
output:
5573.25589693263
result:
ok found '5573.2558969', expected '5573.2558969', error '0.0000000'
Test #7:
score: 0
Accepted
time: 1ms
memory: 2124kb
input:
20 474 215 66 376 120 6 367 259 211 362 293 34 416 407 554 133 292 894 171 278 871 459 187 674 383 192 980 352 78 899 83 27 684 138 185 709 357 234 359 390 241 40 418 124 161 258 348 462 408 59 851 110 184 668 28 447 761 20 131 367
output:
8510.59561788341
result:
ok found '8510.5956179', expected '8510.5956179', error '0.0000000'
Test #8:
score: -100
Time Limit Exceeded
input:
400 979422 264252 76260 922920 334464 58710 87057 798078 39652 602478 649867 49073 388746 161788 44501 727471 373113 28061 944959 505744 22145 191465 164645 49421 102241 771049 65953 44911 762286 34082 112779 537040 98117 688054 585935 53647 391845 931395 55355 788464 698271 91449 984533 409449 8331...