QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#320926#8211. Enumerating Substringsucup-team635#AC ✓147ms5960kbRust19.4kb2024-02-03 23:52:442024-02-03 23:52:44

Judging History

你现在查看的是最新测评结果

  • [2024-02-03 23:52:44]
  • 评测
  • 测评结果:AC
  • 用时:147ms
  • 内存:5960kb
  • [2024-02-03 23:52:44]
  • 提交

answer

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

type M = ModInt<1_000_000_007>;

fn main() {
    input! {
        n: usize,
        m: usize,
        k: usize,
    }
    let pc = Precalc::new(m + 10);
    let r = [M::one(), M::one(), pc.inv(2)];
    let mut dp = vec![M::one()];
    for i in (0..30).rev() {
        dp = dp.mul(&dp);
        if k >> i & 1 == 1 {
            dp = r.mul(&dp);
        }
        dp.truncate(m + 1);
    }
    dp.resize(m + 1, M::zero());
    let all = dp[m] * pc.fact(m);
    let mut memo = vec![M::zero(); m / 2 + 1];
    for i in 1..memo.len() {
        for j in 0..dp.len() {
            let v = dp[j];
            if j + 1 < dp.len() {
                dp[j + 1] -= v;
            }
            if j + 2 < dp.len() {
                dp[j + 2] -= v * pc.inv(2);
            }
        }
        let mut way = dp[m - 2 * i] * pc.fact(m - 2 * i);
        for j in 0..i {
            way *= M::from(k - j);
        }
        memo[i] = way;
    }
    memo[0] = all - memo[1..].iter().fold(M::zero(), |s, a| s + *a);
    let mut ans = memo[0] * M::from(n - m + 1) * M::from(k).pow((n - m) as u64);
    let mut dp = vec![M::zero(); n + 1];
    for i in 1..memo.len() {
        let mut way = memo[i];
        let mut k = m;
        while k < dp.len() {
            dp[k] += way;
            way = -way;
            k += m - i;
        }
    }
    for (i, dp) in dp.iter().enumerate() {
        ans += M::from(n - i + 1) * *dp * M::from(k).pow((n - i) as u64);
    }
    println!("{}", ans);
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

use std::ops::*;

// ---------- begin trait ----------
pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait SemiRing: Zero + One {}

pub trait Ring: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}

impl<T> SemiRing for T where T: Zero + One {}

impl<T> Ring for T where T: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}

impl<T> Field for T where T: Ring + Div<Output = Self> {}
// ---------- end trait ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
    fact: Vec<ModInt<MOD>>,
    ifact: Vec<ModInt<MOD>>,
    inv: Vec<ModInt<MOD>>,
}

impl<const MOD: u32> Precalc<MOD> {
    pub fn new(size: usize) -> Self {
        let mut fact = vec![ModInt::one(); size + 1];
        let mut ifact = vec![ModInt::one(); size + 1];
        let mut inv = vec![ModInt::one(); size + 1];
        for i in 2..=size {
            fact[i] = fact[i - 1] * ModInt::from(i);
        }
        ifact[size] = fact[size].inv();
        for i in (2..=size).rev() {
            inv[i] = ifact[i] * fact[i - 1];
            ifact[i - 1] = ifact[i] * ModInt::from(i);
        }
        Self { fact, ifact, inv }
    }
    pub fn fact(&self, n: usize) -> ModInt<MOD> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<MOD> {
        self.ifact[n]
    }
    pub fn inv(&self, n: usize) -> ModInt<MOD> {
        assert!(0 < n);
        self.inv[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
        if n < k {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

// ---------- begin array op ----------

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end array op ----------

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 2092kb

input:

4 2 3

output:

228

result:

ok 1 number(s): "228"

Test #2:

score: 0
Accepted
time: 147ms
memory: 5792kb

input:

999999 1999 12345678

output:

52352722

result:

ok 1 number(s): "52352722"

Test #3:

score: 0
Accepted
time: 0ms
memory: 2096kb

input:

7 4 2

output:

182

result:

ok 1 number(s): "182"

Test #4:

score: 0
Accepted
time: 0ms
memory: 2052kb

input:

4 3 4

output:

480

result:

ok 1 number(s): "480"

Test #5:

score: 0
Accepted
time: 0ms
memory: 2104kb

input:

3 1 1

output:

3

result:

ok 1 number(s): "3"

Test #6:

score: 0
Accepted
time: 0ms
memory: 1980kb

input:

5 5 1

output:

0

result:

ok 1 number(s): "0"

Test #7:

score: 0
Accepted
time: 0ms
memory: 2024kb

input:

7 4 3

output:

5784

result:

ok 1 number(s): "5784"

Test #8:

score: 0
Accepted
time: 0ms
memory: 2080kb

input:

5 2 4

output:

3932

result:

ok 1 number(s): "3932"

Test #9:

score: 0
Accepted
time: 0ms
memory: 2060kb

input:

8 2 2

output:

1522

result:

ok 1 number(s): "1522"

Test #10:

score: 0
Accepted
time: 0ms
memory: 2028kb

input:

8 1 2

output:

2048

result:

ok 1 number(s): "2048"

Test #11:

score: 0
Accepted
time: 0ms
memory: 2172kb

input:

7 5 3

output:

2430

result:

ok 1 number(s): "2430"

Test #12:

score: 0
Accepted
time: 0ms
memory: 1992kb

input:

10 4 3

output:

272004

result:

ok 1 number(s): "272004"

Test #13:

score: 0
Accepted
time: 59ms
memory: 4636kb

input:

675978 614 2

output:

0

result:

ok 1 number(s): "0"

Test #14:

score: 0
Accepted
time: 21ms
memory: 2924kb

input:

244613 38 1

output:

0

result:

ok 1 number(s): "0"

Test #15:

score: 0
Accepted
time: 17ms
memory: 2820kb

input:

186293 1462 1

output:

0

result:

ok 1 number(s): "0"

Test #16:

score: 0
Accepted
time: 4ms
memory: 2172kb

input:

24867 886 1

output:

0

result:

ok 1 number(s): "0"

Test #17:

score: 0
Accepted
time: 94ms
memory: 5816kb

input:

976164 1014 2

output:

0

result:

ok 1 number(s): "0"

Test #18:

score: 0
Accepted
time: 15ms
memory: 2712kb

input:

179356 2 716844809

output:

577866092

result:

ok 1 number(s): "577866092"

Test #19:

score: 0
Accepted
time: 58ms
memory: 4372kb

input:

621001 130 310625363

output:

892869197

result:

ok 1 number(s): "892869197"

Test #20:

score: 0
Accepted
time: 69ms
memory: 4716kb

input:

678862 850 754662812

output:

582264789

result:

ok 1 number(s): "582264789"

Test #21:

score: 0
Accepted
time: 74ms
memory: 4492kb

input:

650845 978 348443366

output:

825425732

result:

ok 1 number(s): "825425732"

Test #22:

score: 0
Accepted
time: 64ms
memory: 4496kb

input:

669914 402 87448112

output:

318098088

result:

ok 1 number(s): "318098088"

Test #23:

score: 0
Accepted
time: 99ms
memory: 5960kb

input:

998593 530 681228665

output:

408255654

result:

ok 1 number(s): "408255654"

Test #24:

score: 0
Accepted
time: 99ms
memory: 3500kb

input:

369361 1954 125266115

output:

509912384

result:

ok 1 number(s): "509912384"

Test #25:

score: 0
Accepted
time: 121ms
memory: 5312kb

input:

900226 1378 424079373

output:

406320917

result:

ok 1 number(s): "406320917"

Test #26:

score: 0
Accepted
time: 64ms
memory: 3392kb

input:

334887 1506 17859926

output:

503264679

result:

ok 1 number(s): "503264679"

Test #27:

score: 0
Accepted
time: 92ms
memory: 5564kb

input:

936048 544 53978328

output:

548647866

result:

ok 1 number(s): "548647866"

Test #28:

score: 0
Accepted
time: 45ms
memory: 2368kb

input:

152789 1264 792983073

output:

839541707

result:

ok 1 number(s): "839541707"

Test #29:

score: 0
Accepted
time: 95ms
memory: 4892kb

input:

714493 1392 91796331

output:

721071046

result:

ok 1 number(s): "721071046"

Test #30:

score: 0
Accepted
time: 33ms
memory: 2972kb

input:

269571 816 830801077

output:

330064211

result:

ok 1 number(s): "330064211"

Test #31:

score: 0
Accepted
time: 96ms
memory: 5336kb

input:

845120 944 424581630

output:

348960190

result:

ok 1 number(s): "348960190"

Test #32:

score: 0
Accepted
time: 51ms
memory: 4180kb

input:

533990 368 163586376

output:

522092095

result:

ok 1 number(s): "522092095"

Test #33:

score: 0
Accepted
time: 76ms
memory: 2820kb

input:

181707 1792 462399634

output:

373795106

result:

ok 1 number(s): "373795106"

Test #34:

score: 0
Accepted
time: 109ms
memory: 3488kb

input:

417349 1920 761212891

output:

587051329

result:

ok 1 number(s): "587051329"

Test #35:

score: 0
Accepted
time: 78ms
memory: 4084kb

input:

526583 1344 500217637

output:

108767800

result:

ok 1 number(s): "108767800"

Test #36:

score: 0
Accepted
time: 92ms
memory: 5296kb

input:

867054 769 93998191

output:

239123369

result:

ok 1 number(s): "239123369"

Extra Test:

score: 0
Extra Test Passed