QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#320924 | #8211. Enumerating Substrings | ucup-team1631# | AC ✓ | 230ms | 3748kb | C++20 | 18.9kb | 2024-02-03 23:52:14 | 2024-02-03 23:52:14 |
Judging History
answer
#include <bits/stdc++.h>
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using namespace atcoder;
using namespace std;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vvvvll = vector<vvvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
using vvvvb = vector<vvvb>;
using vvvvvb = vector<vvvvb>;
#define all(A) A.begin(),A.end()
#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)
template<class T>
bool chmax(T& p, T q, bool C = 1) {
if (C == 0 && p == q) {
return 1;
}
if (p < q) {
p = q;
return 1;
}
else {
return 0;
}
}
template<class T>
bool chmin(T& p, T q, bool C = 1) {
if (C == 0 && p == q) {
return 1;
}
if (p > q) {
p = q;
return 1;
}
else {
return 0;
}
}
ll modPow(long long a, long long n, long long p) {
if (n == 0) return 1; // 0乗にも対応する場合
if (n == 1) return a % p;
if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p;
long long t = modPow(a, n / 2, p);
return (t * t) % p;
}
ll cnt = 0;
ll gcd(ll(a), ll(b)) {
cnt++;
if (a == 0)return b;
if (b == 0)return a;
ll c = a;
while (a % b != 0) {
c = a % b;
a = b;
b = c;
}
return b;
}
ll sqrtz(ll N) {
ll L = 0;
ll R = sqrt(N) + 10000;
while (abs(R - L) > 1) {
ll mid = (R + L) / 2;
if (mid * mid <= N)L = mid;
else R = mid;
}
return L;
}
bool DEB=0;
ll N,M,K;
using mint = modint1000000007;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
vector<mint> fact, factinv, inv,factK;
const ll mod = 1e9+7;
void prenCkModp(ll n) {
factK.resize(4*n+5);
fact.resize(n + 5);
factinv.resize(n + 5);
inv.resize(n + 5);
fact[0] = fact[1] = 1;
factinv[0] = factinv[1] = 1;
inv[1] = 1;
for (ll i = 2; i < n + 5; i++) {
fact[i] = (fact[i - 1] * i);
inv[i] = (mod - ((inv[mod % i] * (mod / i))));
factinv[i] = (factinv[i - 1] * inv[i]);
}
factK[0]=1;
for(ll i=1;i<4*n+5;i++){
factK[i]=factK[i-1]*mint(K-i+1);
//K*(K-1)*...*(K-i+1);
}
}
mint nCk(ll n, ll k) {
if (n < k || k < 0) return 0;
return (fact[n] * ((factinv[k] * factinv[n - k])));
}
mint nCkK(ll n,ll k){
if(K<n||K-n<k)return 0;
mint res=factK[n+k];
res*=factK[n].inv();
res*=factinv[k];
return res;
}
mint sumB=0;
mint numofbeautiful(ll y){
mint r=0;
for(ll z=0;z<=M;z++){
mint b=1;
if(M<2*y||M-2*y<2*z||K-y-z<0||K-y-z<M-2*y-2*z)continue;
b*=nCkK(0,y+z);//binom(K-n,y+z);
b*=nCk(y+z,z);
b*=fact[y];
//b*=nCk(M-2*y,2*z);
b*=fact[M-2*y]*factinv[M-2*y-2*z];
b/=mint(2).pow(z);
b*=nCkK(y+z,M-2*y-2*z);//binom(K-y-z,M-2y-2z);
b*=fact[M-2*y-2*z];
r+=b;
}
if(y!=0)sumB+=r;
return r;
}
mint an=0;
void res(ll y){
if(y*2>M)return;
mint r=numofbeautiful(y);
ll D=M-y;
mint p=0;
for(ll x=1;x<N;x++){
ll u=N-(D*x+y);
if(u<0)break;
p+=mint(u+1)*(mint(K).pow(u))*(x%2==1?1:-1);
}
an+=p*r;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cin>>N>>M>>K;
prenCkModp(M);
for(int y=1;y<=M;y++)res(y);
mint kasanari0=numofbeautiful(0)-sumB;
an+=kasanari0*(N-M+1)*mint(K).pow(N-M);
cout<<an.val()<<endl;
//for(auto k:factK)cout<<k.val()<<endl;
//cout<<nCkK(2,2).val()<<endl;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3552kb
input:
4 2 3
output:
228
result:
ok 1 number(s): "228"
Test #2:
score: 0
Accepted
time: 230ms
memory: 3684kb
input:
999999 1999 12345678
output:
52352722
result:
ok 1 number(s): "52352722"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
7 4 2
output:
182
result:
ok 1 number(s): "182"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3640kb
input:
4 3 4
output:
480
result:
ok 1 number(s): "480"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
3 1 1
output:
3
result:
ok 1 number(s): "3"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3608kb
input:
5 5 1
output:
0
result:
ok 1 number(s): "0"
Test #7:
score: 0
Accepted
time: 1ms
memory: 3632kb
input:
7 4 3
output:
5784
result:
ok 1 number(s): "5784"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
5 2 4
output:
3932
result:
ok 1 number(s): "3932"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3556kb
input:
8 2 2
output:
1522
result:
ok 1 number(s): "1522"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
8 1 2
output:
2048
result:
ok 1 number(s): "2048"
Test #11:
score: 0
Accepted
time: 1ms
memory: 3576kb
input:
7 5 3
output:
2430
result:
ok 1 number(s): "2430"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
10 4 3
output:
272004
result:
ok 1 number(s): "272004"
Test #13:
score: 0
Accepted
time: 38ms
memory: 3564kb
input:
675978 614 2
output:
0
result:
ok 1 number(s): "0"
Test #14:
score: 0
Accepted
time: 12ms
memory: 3628kb
input:
244613 38 1
output:
0
result:
ok 1 number(s): "0"
Test #15:
score: 0
Accepted
time: 11ms
memory: 3656kb
input:
186293 1462 1
output:
0
result:
ok 1 number(s): "0"
Test #16:
score: 0
Accepted
time: 2ms
memory: 3640kb
input:
24867 886 1
output:
0
result:
ok 1 number(s): "0"
Test #17:
score: 0
Accepted
time: 57ms
memory: 3608kb
input:
976164 1014 2
output:
0
result:
ok 1 number(s): "0"
Test #18:
score: 0
Accepted
time: 11ms
memory: 3628kb
input:
179356 2 716844809
output:
577866092
result:
ok 1 number(s): "577866092"
Test #19:
score: 0
Accepted
time: 34ms
memory: 3704kb
input:
621001 130 310625363
output:
892869197
result:
ok 1 number(s): "892869197"
Test #20:
score: 0
Accepted
time: 69ms
memory: 3580kb
input:
678862 850 754662812
output:
582264789
result:
ok 1 number(s): "582264789"
Test #21:
score: 0
Accepted
time: 70ms
memory: 3576kb
input:
650845 978 348443366
output:
825425732
result:
ok 1 number(s): "825425732"
Test #22:
score: 0
Accepted
time: 43ms
memory: 3712kb
input:
669914 402 87448112
output:
318098088
result:
ok 1 number(s): "318098088"
Test #23:
score: 0
Accepted
time: 67ms
memory: 3624kb
input:
998593 530 681228665
output:
408255654
result:
ok 1 number(s): "408255654"
Test #24:
score: 0
Accepted
time: 186ms
memory: 3684kb
input:
369361 1954 125266115
output:
509912384
result:
ok 1 number(s): "509912384"
Test #25:
score: 0
Accepted
time: 132ms
memory: 3660kb
input:
900226 1378 424079373
output:
406320917
result:
ok 1 number(s): "406320917"
Test #26:
score: 0
Accepted
time: 113ms
memory: 3740kb
input:
334887 1506 17859926
output:
503264679
result:
ok 1 number(s): "503264679"
Test #27:
score: 0
Accepted
time: 64ms
memory: 3656kb
input:
936048 544 53978328
output:
548647866
result:
ok 1 number(s): "548647866"
Test #28:
score: 0
Accepted
time: 74ms
memory: 3624kb
input:
152789 1264 792983073
output:
839541707
result:
ok 1 number(s): "839541707"
Test #29:
score: 0
Accepted
time: 123ms
memory: 3672kb
input:
714493 1392 91796331
output:
721071046
result:
ok 1 number(s): "721071046"
Test #30:
score: 0
Accepted
time: 43ms
memory: 3600kb
input:
269571 816 830801077
output:
330064211
result:
ok 1 number(s): "330064211"
Test #31:
score: 0
Accepted
time: 86ms
memory: 3724kb
input:
845120 944 424581630
output:
348960190
result:
ok 1 number(s): "348960190"
Test #32:
score: 0
Accepted
time: 34ms
memory: 3588kb
input:
533990 368 163586376
output:
522092095
result:
ok 1 number(s): "522092095"
Test #33:
score: 0
Accepted
time: 148ms
memory: 3728kb
input:
181707 1792 462399634
output:
373795106
result:
ok 1 number(s): "373795106"
Test #34:
score: 0
Accepted
time: 182ms
memory: 3748kb
input:
417349 1920 761212891
output:
587051329
result:
ok 1 number(s): "587051329"
Test #35:
score: 0
Accepted
time: 107ms
memory: 3668kb
input:
526583 1344 500217637
output:
108767800
result:
ok 1 number(s): "108767800"
Test #36:
score: 0
Accepted
time: 70ms
memory: 3624kb
input:
867054 769 93998191
output:
239123369
result:
ok 1 number(s): "239123369"
Extra Test:
score: 0
Extra Test Passed