QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#320924#8211. Enumerating Substringsucup-team1631#AC ✓230ms3748kbC++2018.9kb2024-02-03 23:52:142024-02-03 23:52:14

Judging History

你现在查看的是最新测评结果

  • [2024-02-03 23:52:14]
  • 评测
  • 测评结果:AC
  • 用时:230ms
  • 内存:3748kb
  • [2024-02-03 23:52:14]
  • 提交

answer

#include <bits/stdc++.h>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace atcoder;
using namespace std;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vvvvll = vector<vvvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
using vvvvb = vector<vvvb>;
using vvvvvb = vector<vvvvb>;
#define all(A) A.begin(),A.end()
#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)
template<class T>
bool chmax(T& p, T q, bool C = 1) {
    if (C == 0 && p == q) {
        return 1;
    }
    if (p < q) {
        p = q;
        return 1;
    }
    else {
        return 0;
    }
}
template<class T>
bool chmin(T& p, T q, bool C = 1) {
    if (C == 0 && p == q) {
        return 1;
    }
    if (p > q) {
        p = q;
        return 1;
    }
    else {
        return 0;
    }
}
ll modPow(long long a, long long n, long long p) {
    if (n == 0) return 1; // 0乗にも対応する場合
    if (n == 1) return a % p;
    if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p;
    long long t = modPow(a, n / 2, p);
    return (t * t) % p;
}
ll cnt = 0;
ll gcd(ll(a), ll(b)) {
    cnt++;
    if (a == 0)return b;
    if (b == 0)return a;
    ll c = a;
    while (a % b != 0) {
        c = a % b;
        a = b;
        b = c;
    }
    return b;
}
ll sqrtz(ll N) {
    ll L = 0;
    ll R = sqrt(N) + 10000;
    while (abs(R - L) > 1) {
        ll mid = (R + L) / 2;
        if (mid * mid <= N)L = mid;
        else R = mid;
    }
    return L;
}

bool DEB=0;

ll N,M,K;
using mint = modint1000000007;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;


vector<mint> fact, factinv, inv,factK;
const ll mod = 1e9+7;
void prenCkModp(ll n) {
    factK.resize(4*n+5);
    fact.resize(n + 5);
    factinv.resize(n + 5);
    inv.resize(n + 5);
    fact[0] = fact[1] = 1;
    factinv[0] = factinv[1] = 1;
    inv[1] = 1;
    for (ll i = 2; i < n + 5; i++) {
        fact[i] = (fact[i - 1] * i);
        inv[i] = (mod - ((inv[mod % i] * (mod / i))));
        factinv[i] = (factinv[i - 1] * inv[i]);
    }
    factK[0]=1;
    for(ll i=1;i<4*n+5;i++){
        factK[i]=factK[i-1]*mint(K-i+1);
        //K*(K-1)*...*(K-i+1);
    }
}
mint nCk(ll n, ll k) {
    if (n < k || k < 0) return 0;
    return (fact[n] * ((factinv[k] * factinv[n - k])));
}
mint nCkK(ll n,ll k){
    if(K<n||K-n<k)return 0;
    mint res=factK[n+k];
    res*=factK[n].inv();
    res*=factinv[k];
    return res;
}

mint sumB=0;
mint numofbeautiful(ll y){
    mint r=0;
    for(ll z=0;z<=M;z++){
        mint b=1;
        if(M<2*y||M-2*y<2*z||K-y-z<0||K-y-z<M-2*y-2*z)continue;
        b*=nCkK(0,y+z);//binom(K-n,y+z);
        b*=nCk(y+z,z);
        b*=fact[y];
        //b*=nCk(M-2*y,2*z);
        b*=fact[M-2*y]*factinv[M-2*y-2*z];
        b/=mint(2).pow(z);
        b*=nCkK(y+z,M-2*y-2*z);//binom(K-y-z,M-2y-2z);
        b*=fact[M-2*y-2*z];
        r+=b;
    }
    if(y!=0)sumB+=r;
    return r;
}

mint an=0;
void res(ll y){
    if(y*2>M)return;
    mint r=numofbeautiful(y);
    ll D=M-y;
    mint p=0;
    for(ll x=1;x<N;x++){
        ll u=N-(D*x+y);
        if(u<0)break;
        p+=mint(u+1)*(mint(K).pow(u))*(x%2==1?1:-1);
    }
    an+=p*r;
}

int main() {

    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    cin>>N>>M>>K;
    prenCkModp(M);
    for(int y=1;y<=M;y++)res(y);
    mint kasanari0=numofbeautiful(0)-sumB;
    an+=kasanari0*(N-M+1)*mint(K).pow(N-M);

    cout<<an.val()<<endl;
    //for(auto k:factK)cout<<k.val()<<endl;
    //cout<<nCkK(2,2).val()<<endl;
    
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3552kb

input:

4 2 3

output:

228

result:

ok 1 number(s): "228"

Test #2:

score: 0
Accepted
time: 230ms
memory: 3684kb

input:

999999 1999 12345678

output:

52352722

result:

ok 1 number(s): "52352722"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

7 4 2

output:

182

result:

ok 1 number(s): "182"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

4 3 4

output:

480

result:

ok 1 number(s): "480"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

3 1 1

output:

3

result:

ok 1 number(s): "3"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3608kb

input:

5 5 1

output:

0

result:

ok 1 number(s): "0"

Test #7:

score: 0
Accepted
time: 1ms
memory: 3632kb

input:

7 4 3

output:

5784

result:

ok 1 number(s): "5784"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

5 2 4

output:

3932

result:

ok 1 number(s): "3932"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

8 2 2

output:

1522

result:

ok 1 number(s): "1522"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

8 1 2

output:

2048

result:

ok 1 number(s): "2048"

Test #11:

score: 0
Accepted
time: 1ms
memory: 3576kb

input:

7 5 3

output:

2430

result:

ok 1 number(s): "2430"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

10 4 3

output:

272004

result:

ok 1 number(s): "272004"

Test #13:

score: 0
Accepted
time: 38ms
memory: 3564kb

input:

675978 614 2

output:

0

result:

ok 1 number(s): "0"

Test #14:

score: 0
Accepted
time: 12ms
memory: 3628kb

input:

244613 38 1

output:

0

result:

ok 1 number(s): "0"

Test #15:

score: 0
Accepted
time: 11ms
memory: 3656kb

input:

186293 1462 1

output:

0

result:

ok 1 number(s): "0"

Test #16:

score: 0
Accepted
time: 2ms
memory: 3640kb

input:

24867 886 1

output:

0

result:

ok 1 number(s): "0"

Test #17:

score: 0
Accepted
time: 57ms
memory: 3608kb

input:

976164 1014 2

output:

0

result:

ok 1 number(s): "0"

Test #18:

score: 0
Accepted
time: 11ms
memory: 3628kb

input:

179356 2 716844809

output:

577866092

result:

ok 1 number(s): "577866092"

Test #19:

score: 0
Accepted
time: 34ms
memory: 3704kb

input:

621001 130 310625363

output:

892869197

result:

ok 1 number(s): "892869197"

Test #20:

score: 0
Accepted
time: 69ms
memory: 3580kb

input:

678862 850 754662812

output:

582264789

result:

ok 1 number(s): "582264789"

Test #21:

score: 0
Accepted
time: 70ms
memory: 3576kb

input:

650845 978 348443366

output:

825425732

result:

ok 1 number(s): "825425732"

Test #22:

score: 0
Accepted
time: 43ms
memory: 3712kb

input:

669914 402 87448112

output:

318098088

result:

ok 1 number(s): "318098088"

Test #23:

score: 0
Accepted
time: 67ms
memory: 3624kb

input:

998593 530 681228665

output:

408255654

result:

ok 1 number(s): "408255654"

Test #24:

score: 0
Accepted
time: 186ms
memory: 3684kb

input:

369361 1954 125266115

output:

509912384

result:

ok 1 number(s): "509912384"

Test #25:

score: 0
Accepted
time: 132ms
memory: 3660kb

input:

900226 1378 424079373

output:

406320917

result:

ok 1 number(s): "406320917"

Test #26:

score: 0
Accepted
time: 113ms
memory: 3740kb

input:

334887 1506 17859926

output:

503264679

result:

ok 1 number(s): "503264679"

Test #27:

score: 0
Accepted
time: 64ms
memory: 3656kb

input:

936048 544 53978328

output:

548647866

result:

ok 1 number(s): "548647866"

Test #28:

score: 0
Accepted
time: 74ms
memory: 3624kb

input:

152789 1264 792983073

output:

839541707

result:

ok 1 number(s): "839541707"

Test #29:

score: 0
Accepted
time: 123ms
memory: 3672kb

input:

714493 1392 91796331

output:

721071046

result:

ok 1 number(s): "721071046"

Test #30:

score: 0
Accepted
time: 43ms
memory: 3600kb

input:

269571 816 830801077

output:

330064211

result:

ok 1 number(s): "330064211"

Test #31:

score: 0
Accepted
time: 86ms
memory: 3724kb

input:

845120 944 424581630

output:

348960190

result:

ok 1 number(s): "348960190"

Test #32:

score: 0
Accepted
time: 34ms
memory: 3588kb

input:

533990 368 163586376

output:

522092095

result:

ok 1 number(s): "522092095"

Test #33:

score: 0
Accepted
time: 148ms
memory: 3728kb

input:

181707 1792 462399634

output:

373795106

result:

ok 1 number(s): "373795106"

Test #34:

score: 0
Accepted
time: 182ms
memory: 3748kb

input:

417349 1920 761212891

output:

587051329

result:

ok 1 number(s): "587051329"

Test #35:

score: 0
Accepted
time: 107ms
memory: 3668kb

input:

526583 1344 500217637

output:

108767800

result:

ok 1 number(s): "108767800"

Test #36:

score: 0
Accepted
time: 70ms
memory: 3624kb

input:

867054 769 93998191

output:

239123369

result:

ok 1 number(s): "239123369"

Extra Test:

score: 0
Extra Test Passed