QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#320850 | #8207. Anton's ABCD | ucup-team1631# | AC ✓ | 4ms | 7180kb | C++20 | 17.4kb | 2024-02-03 22:32:10 | 2024-02-03 22:32:11 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>
#define repname(a, b, c, d, e, ...) e
#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x) for (int i = 0; i < (x); ++i)
#define rep2(i, l, r) for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))
struct ScalarInput {
template<class T>
operator T(){
T ret;
cin >> ret;
return ret;
}
};
struct VectorInput {
size_t n;
VectorInput(size_t n): n(n) {}
template<class T>
operator vector<T>(){
vector<T> ret(n);
for(T &x : ret) cin >> x;
return ret;
}
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }
template<typename T>
void print(vector<T> a){
for(int i=0;i<a.size();i++){
cout<<a[i]<<" \n"[i+1==a.size()];
}
}
template<class T>
void print(T x){
cout << x << '\n';
}
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
cout << head << ' ';
print(forward<Tail>(tail)...);
}
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using namespace atcoder;
using mint=modint1000000007;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
string S;
cin>>S;
int n=S.size();
vector<int>res;
int c=0;
rep(i,n){
int x=(S[i]-'A')-i;
x=(x+100000)%4;
res.push_back(x);
int m=res.size();
if(m>=4&&res[m-1]==res[m-2]&&res[m-2]==res[m-3]&&res[m-3]==res[m-4]){
c++;
rep(4)res.pop_back();
}
}
int m=res.size();
vector<vector<mint>>dp(c+1,vector<mint>(n+1,0));
dp[0][0]=1;
rep(j,c+1){
rep(i,n){
if(i<m+4*j)dp[j][i+1]+=dp[j][i];
if(j!=c&&i==m+4*j)dp[j+1][i+1]+=4*dp[j][i];
if(j!=c&&i<m+4*j)dp[j+1][i+1]+=3*dp[j][i];
}
}
print(dp[c][n].val());
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3568kb
input:
DABC
output:
4
result:
ok 1 number(s): "4"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3524kb
input:
AABBCCDD
output:
1
result:
ok 1 number(s): "1"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3636kb
input:
ABCDABCD
output:
52
result:
ok 1 number(s): "52"
Test #4:
score: 0
Accepted
time: 1ms
memory: 3568kb
input:
CADBDABABABAD
output:
1
result:
ok 1 number(s): "1"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
CCBDADBDDABCA
output:
31
result:
ok 1 number(s): "31"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
DADABDBDCAABB
output:
1
result:
ok 1 number(s): "1"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3528kb
input:
AACDBCBCAAAADCBACDADBBACBBAAAAACBBABBABABADDBCABCADDBDCCCCBBCAABBCBABDACACBDCDBDBCCAADCABAAADDDCABBADDCDDBCADCCCACDDCACDDADADCCACBBBBBDABBCDCCCDCDACACBDBBBBCDADACDDCAADDDCDBDCBDABAACDACDCDAABABBBDCAAC
output:
592
result:
ok 1 number(s): "592"
Test #8:
score: 0
Accepted
time: 1ms
memory: 3588kb
input:
CAACDAADBCABCCADDDCDDCDDACDDBDAACDDCAADDABDDAAACCBBBDBCBBACCCBBBDADCCDCDACDDDBCABCCCAACCACDAABABBBABBBDCBDBDABBCCDADBCACACBBDBDAACCDBDBAADACCBCDACDDBDCCBCACAAADBBCBDAABACDBBDDDDCDCBACBAABCBCCBDACCCABCBBBCBBCDAAAADADAADDBAACCCCBCDDCCACDDDCCCCBDCCCCBBACAABDCCDABACBBDDDDCDDABCDDCBBCDBCBCBACADAADACAAAAD
output:
828546992
result:
ok 1 number(s): "828546992"
Test #9:
score: 0
Accepted
time: 1ms
memory: 3584kb
input:
AACAACAABBADADDBBCBDCDCDCABBCDACDBCACABDDBADCCBDCBADBDDDBDACCBCABDABDDBDDCCAACDCBCCADBDADDCABAADCCCDDDABDAACBAACADADBACCBAADDABACCACCADADABCBDBDCCBDCAACBCADBBBCCAADADBABBBDADACDDBACCBDBCABCAABBDAACDCCDDBBDADBAAADBACBBCDDCADCDDDADBCBADDABDCCDDDDAACADACDCBADAABAADCBADCBCDDBCDBACBBBBADBBABCBDCBDDBCDBDD...
output:
817427318
result:
ok 1 number(s): "817427318"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3888kb
input:
DAACCADACDAACABADBADAABDACDADDAAADBBAADCCBACBACABCDBDCDBABCCCBDDDBCDADDADCBABAADBBDDDCDCCABACCACDCBAABBABCDBCDDBCAADACDCBBCAADCAADBBCCBABCCBABADACDDDBBCBCAADDBBDDCACDBDCADBADCADADDDAAADDDDDCCCDCBDCDDBACBDBABADBABABBCCCACBADCAABBACCDADABDABDBADDCCCDCBCDDCCBCCCDDBCAAAADCDDCAACACCBADDBADDCDCCADDCDACDCD...
output:
933489696
result:
ok 1 number(s): "933489696"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3672kb
input:
BACBDCDBCCABBAADBACDCCAACACDDCACBBDDCABCBBACACDBBCBDAAADAADDCBBDBDABACCACCDBCCBABBDBCDDABBAADBABADACCDDDDACADCCBABBADABCCDACACDADDCDDACAADABAADDBCBAACDBBDABBACBABBCDDBCDDBDDDDCDBBBABDCAACCAADDBBCCCDABCBBCDDCCDBAACCDADCAADBACBBDDBABBAAADBABADCCABACDABBDBDACBDDBCCCDBADACDCDCAABCDBDBCCDCCDDDCCBDCCCBBBD...
output:
246818196
result:
ok 1 number(s): "246818196"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3768kb
input:
CADBBCBBCDCCACBBBCDAADBADCDDBDBDBCCBBAADABBDBBBBBACBCDDCCCBBABBADCADBDBCBADBBBADBCADCBACBADDBAACBDBCDDCDCBAAACDCBCBDDAAADDADCACCBBCCBACBBCBBDBBCDDBACAACADABDCADCBCACDBAABBDBBCDBBBCBBDCBBDDCAABBCBDCDAACBDCCDCCCADBCABDADCDBAAADADDBACCADCCCBCCCBBCDACBDDAACBABBDBAADDBABDACBBDBDDAABDBCBBCAACDCACCCCDBABAD...
output:
973578559
result:
ok 1 number(s): "973578559"
Test #13:
score: 0
Accepted
time: 1ms
memory: 3708kb
input:
DABBCCBBDBADDCCAABDBBBDDADCACDAACCDBCCAABABBDBCDBBABCAACDACCDAADAACBACBCBDBDCABBDCCBBCABABBADBBCDDABBDABDDCBDABAADABDBDADDBDBDBBBBACDABAADCACDAADDDCDADDBBABCBDABADDABBACDADAACDABADBDCDBDBBADAAAADADCDADDACDABDACABBCDDDCBABCCAADCBBDDADDDCBADDCACCDCDDDACDAADADDADBBCAAADBCBDDCBDAACADCDCDCDCABDDBDDCAABCB...
output:
951027687
result:
ok 1 number(s): "951027687"
Test #14:
score: 0
Accepted
time: 1ms
memory: 3772kb
input:
BCDCBCAADADACDACDCACCBAABADCABDBDCAAABACCCCADBABCBBBCCDDCACDCCDABABDBBACABBCDADBCCBBBBCDCCABADBBBDBDCCCDCCDBCACDADBCDAABBBBABDDDBDBBCAACDDABBCDCCCAABBCADBCBCDBCBBDABABBDCACDBACDCCACACBBDCDBBBDDABADBBCCCABABADDAABCDCCCBCCAABBBACCBDBABADABDDBCDBDBABBCBADCAAACBDACDAADCBBBCCBBCBCACABCDCAABCACDCACDCAACDA...
output:
701743515
result:
ok 1 number(s): "701743515"
Test #15:
score: 0
Accepted
time: 1ms
memory: 3704kb
input:
CDACBCACCABBBADBBDAADABACBDACDCBACCCBDBBDBDACBCAABCBCACABABACDCCCAABCDDCAABBAACCACABBDACACDCBCCADDCBDBBBBBDACBCCAADDAACDDDCCCCCBCBBAABDDCACBABCAABBCDDABCBABCBCBABABBDBDDCBBDDCABAABDBCCCCDCDCDCDDDBDAABBCADBDDDCCABDABCBBDBDBDCCACCBDDBDADDABAADCDADCADCCCCBDAABDCCDACABADBACBDAADBDDDDCCCBCDCAAACACDBBADDC...
output:
523242139
result:
ok 1 number(s): "523242139"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3768kb
input:
ABCDACDACADCABBDDABCBDCADCDCACBBBCABDCCDADADCBADCBDCCDBBABABBBBDCDDDDBCBDCBABAACCBDBBCBBBDCDDACABDADAADDDAADBCCAABADAADAAACACCAACDBDCCBABBACDABCDADBCBCDBBCBCDDDDBADCDBAABBACAADDCCBACCACBAAAAACCDBBDDCDABABDACDAADBDCABBBADDDCDCACDBCACBAACAAACDBBBABDCBDABDCBADBBABBAAACBBDCABDBBDCDDBCBCDAABBCABABDABAADA...
output:
204067197
result:
ok 1 number(s): "204067197"
Test #17:
score: 0
Accepted
time: 1ms
memory: 3704kb
input:
CCDADCDCCDCADCABBABACCDAACABCABCBDCAABDCBCADBBCBABBCCBACDBDCADAADDCBDABBCABDCADCBBCBAADADDCAACCDAABCBDBBCDBCBDCDACCABDBCCCCCCCCCCACDBCABACCDCCDACDADADAADBBACBBBDCBADCBBABCDCCDBBAACBDDCDBBDBBBBCDCBDCACDAADACBDDCDCADDBAABBCBAADBCDBCCDDAAAACBBAAACCDBAAACABBBACDABCCCACADBCDDDCCDCCACDCACACCBBABAABDABAADD...
output:
701743515
result:
ok 1 number(s): "701743515"
Test #18:
score: 0
Accepted
time: 1ms
memory: 3776kb
input:
DABBDCCBBDABCDCDDBCBDBABCDADADACCDDDCDAACABDBBAABACCCDCDCBDDDBDBADBDACABCCBCDDCCDBBBADBCBABBBACCCACACCADBCBCBACCADAACDCDAACACBBACCCCDDDCDDADBBCCACBBCBDBCBDACDCDCCBBDBBDBBCCBABAACCDCADADADBCCDABDACDBDBCAACBADDCADCBACAAACABDDCDBCABCAACAADDBBDADCDDBACABAADBCBBADDDAAABCABBDCBBDBABACBDDCBBAABCBDDBDDBABAB...
output:
773765631
result:
ok 1 number(s): "773765631"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3764kb
input:
BCDCCCCDBDCCBABBBCCDBBBBDAABDBDCDDBCDCADDCCCABCDDADDCCBABBCBCDDDBCABBADBBBCAADACBBABABCBDAACCDDCAADCDBCBABCBAACAAABBCDDACCCCCBDCCACBBDCDCDCAAABADBDDADBCBBBADBDCBCCDAABABADBBBDDCAAADBDCADAADAADADCCCABDADAACBCDBCCCCBBADADCABBDABCABBBAAABCDDBCBCAABADADCCDBADBACCABBCAAACCADBDAADDABBDDDBCDCABDCDDADCCACAA...
output:
701743515
result:
ok 1 number(s): "701743515"
Test #20:
score: 0
Accepted
time: 1ms
memory: 3740kb
input:
DDACBCBBACADABDADDDBCACBABBABDCDADDBBBBBABCCABACBAADCAABABBCBBCACCDDCDCAADCDBDDDABDAAAAABBDDDBDBCAAAAABDCACAABCDABDBDCBCAADDCABBCCDAAAABBAAADCDCBAABDBDDDCDDDDBABDCAAABCCADAADCBACCAACDAADBCABCCADDDCDDCDDACDDBDAACDDCAADDABDDAAACCBBBDBCBBACCCBBBDADCCDCDACDDDBCABCCCAACCACDAABABBBABBBDCBDBDABBCCDADBCACAC...
output:
73710745
result:
ok 1 number(s): "73710745"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3760kb
input:
ABCDBCBDACDBDCBCBDDDDDDBBCBCDCBDBDBADDCABDDBDBCADABDCDDCDCBDACBBDCCBDBBAABCCCDBDCBCAACBCDBDAADDAAABCBDDBBDDADCDCABACDCCDBBDBDAADDADDCBDCABCBCBCBADBDBCBACCBDDBCCADDBBDBDCDADABAACAABBDDCBCCBCDDCDCBDCCCACCDBAAADDCCDAACDCDBDDBCBBCCBCABCABBDCACDCABBAAABBACBCDABBCAADACABACCCADDDCDADCADDBBADBDBDCBCDDBCADAA...
output:
57177249
result:
ok 1 number(s): "57177249"
Test #22:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
CCDAACACACBCCDAADAAABCACCDBABAADBDCDACDCCCABDBADAADACBCDCCAAAAADABBDADBADDCBDDADAABAABDBBCCBCBDDCBCACCCDACDDDDDAACCCACABDDDDDACBDBDDABCDACACBABDDCCBDAABBCDDDDAADDDCBCBADDACACCCBCCCCADACBDDDABBDCDDCBADBBDDBCDDCABDABBDCCCBCCBCCDBCCACDDBCCBDDCCDACCDDDBBAAACABAADBBBAAACDCBBCBCDBCCCABDABBBDDBBDBCDDADAAAD...
output:
73710745
result:
ok 1 number(s): "73710745"
Test #23:
score: 0
Accepted
time: 1ms
memory: 3764kb
input:
BACBBBCACBDAADCACDDBBBCBAABCDADBABCAABDAACBACBBADABCACABCBDBADAABCCADDCCCABBCBDBACCBCABBDABAADAACBBBBBBBCDBDCCBDBCCAADBDDADBABDBCBDDDBDCCDDDBACDADCBBDBCCBDDDDBDBCADDCAABBBAADCADBBDBBACBDDDBDDDDBADDAACDADCCABDBADDBACADDCACAAABBABCDADBADBDCDCDAADAADDADACDDACCCDBBADABBDCDBBDDCBBCBADBBBBDDDBCACBCCBDBACD...
output:
833027709
result:
ok 1 number(s): "833027709"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3892kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDDBA
output:
5866101
result:
ok 1 number(s): "5866101"
Test #25:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCD...
output:
914853204
result:
ok 1 number(s): "914853204"
Test #26:
score: 0
Accepted
time: 1ms
memory: 3840kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDB...
output:
909918599
result:
ok 1 number(s): "909918599"
Test #27:
score: 0
Accepted
time: 2ms
memory: 4708kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...
output:
946785739
result:
ok 1 number(s): "946785739"
Test #28:
score: 0
Accepted
time: 0ms
memory: 6224kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...
output:
602280332
result:
ok 1 number(s): "602280332"
Test #29:
score: 0
Accepted
time: 0ms
memory: 7176kb
input:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...
output:
46400062
result:
ok 1 number(s): "46400062"
Test #30:
score: 0
Accepted
time: 0ms
memory: 3780kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...
output:
713574388
result:
ok 1 number(s): "713574388"
Test #31:
score: 0
Accepted
time: 1ms
memory: 3888kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...
output:
821458320
result:
ok 1 number(s): "821458320"
Test #32:
score: 0
Accepted
time: 4ms
memory: 7180kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...
output:
46400062
result:
ok 1 number(s): "46400062"
Test #33:
score: 0
Accepted
time: 0ms
memory: 7044kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...
output:
527809091
result:
ok 1 number(s): "527809091"
Test #34:
score: 0
Accepted
time: 4ms
memory: 7068kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...
output:
511600019
result:
ok 1 number(s): "511600019"
Test #35:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
ABCDABCBBACBABACAACCBBCACCACCBBBCACAACABCBCACBBABBCBCCCCBCBABCCACBABCCACBCCBCCACBCBCCCBBCBACABCCCACBAABCCBBCBBBCBABBCBCCABCCBBBCABBACCCCBCABAACCABBBABAAACCACCCCAABCABCCABABBAACAACACAACAACCBACCACABCBBACCBBCACCBACBCAACABAABCBABBBBBCCCBBCAACAACACBACBABABACABBCAABCBABABAABABACACAACBCBAABABCCABACBBACBCAC...
output:
5089
result:
ok 1 number(s): "5089"
Test #36:
score: 0
Accepted
time: 0ms
memory: 3764kb
input:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABABACCABBCABBCACCACABBCBBCBACBCCBCBCABCBCBBACCACABCACABCCBBCBBCCABABBCCBAABAACBCACBABCACCCCCCCCACBCAACBABACCCAABABAACCBAAABABBAACAB...
output:
803111431
result:
ok 1 number(s): "803111431"
Extra Test:
score: 0
Extra Test Passed