QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#320850#8207. Anton's ABCDucup-team1631#AC ✓4ms7180kbC++2017.4kb2024-02-03 22:32:102024-02-03 22:32:11

Judging History

你现在查看的是最新测评结果

  • [2024-02-03 22:32:11]
  • 评测
  • 测评结果:AC
  • 用时:4ms
  • 内存:7180kb
  • [2024-02-03 22:32:10]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>


#define repname(a, b, c, d, e, ...) e
#define rep(...)                    repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x)                     for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x)                  for (int i = 0; i < (x); ++i)
#define rep2(i, l, r)               for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c)            for (int i = (l); i < (r); i += (c))





struct ScalarInput {
    template<class T>
    operator T(){
        T ret;
        cin >> ret;
        return ret;
    }
};
struct VectorInput {
    size_t n;
    VectorInput(size_t n): n(n) {}
    template<class T>
    operator vector<T>(){
        vector<T> ret(n);
        for(T &x : ret) cin >> x;
        return ret;
    }
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }

template<typename T>
void print(vector<T> a){
  for(int i=0;i<a.size();i++){
    cout<<a[i]<<" \n"[i+1==a.size()];
  }
}

template<class T>
void print(T x){
    cout << x << '\n';
}
 
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
  cout << head << ' ';
  print(forward<Tail>(tail)...);
}




#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace atcoder;

using mint=modint1000000007;
int main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  string S;
  cin>>S;
  int n=S.size();
  vector<int>res;
  int c=0;
  rep(i,n){
    int x=(S[i]-'A')-i;
    x=(x+100000)%4;
    res.push_back(x);
    int m=res.size();
    if(m>=4&&res[m-1]==res[m-2]&&res[m-2]==res[m-3]&&res[m-3]==res[m-4]){
      c++;
      rep(4)res.pop_back();
    }
  }
  int m=res.size();
  vector<vector<mint>>dp(c+1,vector<mint>(n+1,0));
  dp[0][0]=1;
  rep(j,c+1){
    rep(i,n){
      if(i<m+4*j)dp[j][i+1]+=dp[j][i];
      if(j!=c&&i==m+4*j)dp[j+1][i+1]+=4*dp[j][i];
      if(j!=c&&i<m+4*j)dp[j+1][i+1]+=3*dp[j][i];
    }
  }
  print(dp[c][n].val());
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3568kb

input:

DABC

output:

4

result:

ok 1 number(s): "4"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3524kb

input:

AABBCCDD

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3636kb

input:

ABCDABCD

output:

52

result:

ok 1 number(s): "52"

Test #4:

score: 0
Accepted
time: 1ms
memory: 3568kb

input:

CADBDABABABAD

output:

1

result:

ok 1 number(s): "1"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3668kb

input:

CCBDADBDDABCA

output:

31

result:

ok 1 number(s): "31"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

DADABDBDCAABB

output:

1

result:

ok 1 number(s): "1"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3528kb

input:

AACDBCBCAAAADCBACDADBBACBBAAAAACBBABBABABADDBCABCADDBDCCCCBBCAABBCBABDACACBDCDBDBCCAADCABAAADDDCABBADDCDDBCADCCCACDDCACDDADADCCACBBBBBDABBCDCCCDCDACACBDBBBBCDADACDDCAADDDCDBDCBDABAACDACDCDAABABBBDCAAC

output:

592

result:

ok 1 number(s): "592"

Test #8:

score: 0
Accepted
time: 1ms
memory: 3588kb

input:

CAACDAADBCABCCADDDCDDCDDACDDBDAACDDCAADDABDDAAACCBBBDBCBBACCCBBBDADCCDCDACDDDBCABCCCAACCACDAABABBBABBBDCBDBDABBCCDADBCACACBBDBDAACCDBDBAADACCBCDACDDBDCCBCACAAADBBCBDAABACDBBDDDDCDCBACBAABCBCCBDACCCABCBBBCBBCDAAAADADAADDBAACCCCBCDDCCACDDDCCCCBDCCCCBBACAABDCCDABACBBDDDDCDDABCDDCBBCDBCBCBACADAADACAAAAD

output:

828546992

result:

ok 1 number(s): "828546992"

Test #9:

score: 0
Accepted
time: 1ms
memory: 3584kb

input:

AACAACAABBADADDBBCBDCDCDCABBCDACDBCACABDDBADCCBDCBADBDDDBDACCBCABDABDDBDDCCAACDCBCCADBDADDCABAADCCCDDDABDAACBAACADADBACCBAADDABACCACCADADABCBDBDCCBDCAACBCADBBBCCAADADBABBBDADACDDBACCBDBCABCAABBDAACDCCDDBBDADBAAADBACBBCDDCADCDDDADBCBADDABDCCDDDDAACADACDCBADAABAADCBADCBCDDBCDBACBBBBADBBABCBDCBDDBCDBDD...

output:

817427318

result:

ok 1 number(s): "817427318"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3888kb

input:

DAACCADACDAACABADBADAABDACDADDAAADBBAADCCBACBACABCDBDCDBABCCCBDDDBCDADDADCBABAADBBDDDCDCCABACCACDCBAABBABCDBCDDBCAADACDCBBCAADCAADBBCCBABCCBABADACDDDBBCBCAADDBBDDCACDBDCADBADCADADDDAAADDDDDCCCDCBDCDDBACBDBABADBABABBCCCACBADCAABBACCDADABDABDBADDCCCDCBCDDCCBCCCDDBCAAAADCDDCAACACCBADDBADDCDCCADDCDACDCD...

output:

933489696

result:

ok 1 number(s): "933489696"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3672kb

input:

BACBDCDBCCABBAADBACDCCAACACDDCACBBDDCABCBBACACDBBCBDAAADAADDCBBDBDABACCACCDBCCBABBDBCDDABBAADBABADACCDDDDACADCCBABBADABCCDACACDADDCDDACAADABAADDBCBAACDBBDABBACBABBCDDBCDDBDDDDCDBBBABDCAACCAADDBBCCCDABCBBCDDCCDBAACCDADCAADBACBBDDBABBAAADBABADCCABACDABBDBDACBDDBCCCDBADACDCDCAABCDBDBCCDCCDDDCCBDCCCBBBD...

output:

246818196

result:

ok 1 number(s): "246818196"

Test #12:

score: 0
Accepted
time: 1ms
memory: 3768kb

input:

CADBBCBBCDCCACBBBCDAADBADCDDBDBDBCCBBAADABBDBBBBBACBCDDCCCBBABBADCADBDBCBADBBBADBCADCBACBADDBAACBDBCDDCDCBAAACDCBCBDDAAADDADCACCBBCCBACBBCBBDBBCDDBACAACADABDCADCBCACDBAABBDBBCDBBBCBBDCBBDDCAABBCBDCDAACBDCCDCCCADBCABDADCDBAAADADDBACCADCCCBCCCBBCDACBDDAACBABBDBAADDBABDACBBDBDDAABDBCBBCAACDCACCCCDBABAD...

output:

973578559

result:

ok 1 number(s): "973578559"

Test #13:

score: 0
Accepted
time: 1ms
memory: 3708kb

input:

DABBCCBBDBADDCCAABDBBBDDADCACDAACCDBCCAABABBDBCDBBABCAACDACCDAADAACBACBCBDBDCABBDCCBBCABABBADBBCDDABBDABDDCBDABAADABDBDADDBDBDBBBBACDABAADCACDAADDDCDADDBBABCBDABADDABBACDADAACDABADBDCDBDBBADAAAADADCDADDACDABDACABBCDDDCBABCCAADCBBDDADDDCBADDCACCDCDDDACDAADADDADBBCAAADBCBDDCBDAACADCDCDCDCABDDBDDCAABCB...

output:

951027687

result:

ok 1 number(s): "951027687"

Test #14:

score: 0
Accepted
time: 1ms
memory: 3772kb

input:

BCDCBCAADADACDACDCACCBAABADCABDBDCAAABACCCCADBABCBBBCCDDCACDCCDABABDBBACABBCDADBCCBBBBCDCCABADBBBDBDCCCDCCDBCACDADBCDAABBBBABDDDBDBBCAACDDABBCDCCCAABBCADBCBCDBCBBDABABBDCACDBACDCCACACBBDCDBBBDDABADBBCCCABABADDAABCDCCCBCCAABBBACCBDBABADABDDBCDBDBABBCBADCAAACBDACDAADCBBBCCBBCBCACABCDCAABCACDCACDCAACDA...

output:

701743515

result:

ok 1 number(s): "701743515"

Test #15:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

CDACBCACCABBBADBBDAADABACBDACDCBACCCBDBBDBDACBCAABCBCACABABACDCCCAABCDDCAABBAACCACABBDACACDCBCCADDCBDBBBBBDACBCCAADDAACDDDCCCCCBCBBAABDDCACBABCAABBCDDABCBABCBCBABABBDBDDCBBDDCABAABDBCCCCDCDCDCDDDBDAABBCADBDDDCCABDABCBBDBDBDCCACCBDDBDADDABAADCDADCADCCCCBDAABDCCDACABADBACBDAADBDDDDCCCBCDCAAACACDBBADDC...

output:

523242139

result:

ok 1 number(s): "523242139"

Test #16:

score: 0
Accepted
time: 0ms
memory: 3768kb

input:

ABCDACDACADCABBDDABCBDCADCDCACBBBCABDCCDADADCBADCBDCCDBBABABBBBDCDDDDBCBDCBABAACCBDBBCBBBDCDDACABDADAADDDAADBCCAABADAADAAACACCAACDBDCCBABBACDABCDADBCBCDBBCBCDDDDBADCDBAABBACAADDCCBACCACBAAAAACCDBBDDCDABABDACDAADBDCABBBADDDCDCACDBCACBAACAAACDBBBABDCBDABDCBADBBABBAAACBBDCABDBBDCDDBCBCDAABBCABABDABAADA...

output:

204067197

result:

ok 1 number(s): "204067197"

Test #17:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

CCDADCDCCDCADCABBABACCDAACABCABCBDCAABDCBCADBBCBABBCCBACDBDCADAADDCBDABBCABDCADCBBCBAADADDCAACCDAABCBDBBCDBCBDCDACCABDBCCCCCCCCCCACDBCABACCDCCDACDADADAADBBACBBBDCBADCBBABCDCCDBBAACBDDCDBBDBBBBCDCBDCACDAADACBDDCDCADDBAABBCBAADBCDBCCDDAAAACBBAAACCDBAAACABBBACDABCCCACADBCDDDCCDCCACDCACACCBBABAABDABAADD...

output:

701743515

result:

ok 1 number(s): "701743515"

Test #18:

score: 0
Accepted
time: 1ms
memory: 3776kb

input:

DABBDCCBBDABCDCDDBCBDBABCDADADACCDDDCDAACABDBBAABACCCDCDCBDDDBDBADBDACABCCBCDDCCDBBBADBCBABBBACCCACACCADBCBCBACCADAACDCDAACACBBACCCCDDDCDDADBBCCACBBCBDBCBDACDCDCCBBDBBDBBCCBABAACCDCADADADBCCDABDACDBDBCAACBADDCADCBACAAACABDDCDBCABCAACAADDBBDADCDDBACABAADBCBBADDDAAABCABBDCBBDBABACBDDCBBAABCBDDBDDBABAB...

output:

773765631

result:

ok 1 number(s): "773765631"

Test #19:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

BCDCCCCDBDCCBABBBCCDBBBBDAABDBDCDDBCDCADDCCCABCDDADDCCBABBCBCDDDBCABBADBBBCAADACBBABABCBDAACCDDCAADCDBCBABCBAACAAABBCDDACCCCCBDCCACBBDCDCDCAAABADBDDADBCBBBADBDCBCCDAABABADBBBDDCAAADBDCADAADAADADCCCABDADAACBCDBCCCCBBADADCABBDABCABBBAAABCDDBCBCAABADADCCDBADBACCABBCAAACCADBDAADDABBDDDBCDCABDCDDADCCACAA...

output:

701743515

result:

ok 1 number(s): "701743515"

Test #20:

score: 0
Accepted
time: 1ms
memory: 3740kb

input:

DDACBCBBACADABDADDDBCACBABBABDCDADDBBBBBABCCABACBAADCAABABBCBBCACCDDCDCAADCDBDDDABDAAAAABBDDDBDBCAAAAABDCACAABCDABDBDCBCAADDCABBCCDAAAABBAAADCDCBAABDBDDDCDDDDBABDCAAABCCADAADCBACCAACDAADBCABCCADDDCDDCDDACDDBDAACDDCAADDABDDAAACCBBBDBCBBACCCBBBDADCCDCDACDDDBCABCCCAACCACDAABABBBABBBDCBDBDABBCCDADBCACAC...

output:

73710745

result:

ok 1 number(s): "73710745"

Test #21:

score: 0
Accepted
time: 0ms
memory: 3760kb

input:

ABCDBCBDACDBDCBCBDDDDDDBBCBCDCBDBDBADDCABDDBDBCADABDCDDCDCBDACBBDCCBDBBAABCCCDBDCBCAACBCDBDAADDAAABCBDDBBDDADCDCABACDCCDBBDBDAADDADDCBDCABCBCBCBADBDBCBACCBDDBCCADDBBDBDCDADABAACAABBDDCBCCBCDDCDCBDCCCACCDBAAADDCCDAACDCDBDDBCBBCCBCABCABBDCACDCABBAAABBACBCDABBCAADACABACCCADDDCDADCADDBBADBDBDCBCDDBCADAA...

output:

57177249

result:

ok 1 number(s): "57177249"

Test #22:

score: 0
Accepted
time: 0ms
memory: 3704kb

input:

CCDAACACACBCCDAADAAABCACCDBABAADBDCDACDCCCABDBADAADACBCDCCAAAAADABBDADBADDCBDDADAABAABDBBCCBCBDDCBCACCCDACDDDDDAACCCACABDDDDDACBDBDDABCDACACBABDDCCBDAABBCDDDDAADDDCBCBADDACACCCBCCCCADACBDDDABBDCDDCBADBBDDBCDDCABDABBDCCCBCCBCCDBCCACDDBCCBDDCCDACCDDDBBAAACABAADBBBAAACDCBBCBCDBCCCABDABBBDDBBDBCDDADAAAD...

output:

73710745

result:

ok 1 number(s): "73710745"

Test #23:

score: 0
Accepted
time: 1ms
memory: 3764kb

input:

BACBBBCACBDAADCACDDBBBCBAABCDADBABCAABDAACBACBBADABCACABCBDBADAABCCADDCCCABBCBDBACCBCABBDABAADAACBBBBBBBCDBDCCBDBCCAADBDDADBABDBCBDDDBDCCDDDBACDADCBBDBCCBDDDDBDBCADDCAABBBAADCADBBDBBACBDDDBDDDDBADDAACDADCCABDBADDBACADDCACAAABBABCDADBADBDCDCDAADAADDADACDDACCCDBBADABBDCDBBDDCBBCBADBBBBDDDBCACBCCBDBACD...

output:

833027709

result:

ok 1 number(s): "833027709"

Test #24:

score: 0
Accepted
time: 0ms
memory: 3892kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDDBA

output:

5866101

result:

ok 1 number(s): "5866101"

Test #25:

score: 0
Accepted
time: 0ms
memory: 3704kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCD...

output:

914853204

result:

ok 1 number(s): "914853204"

Test #26:

score: 0
Accepted
time: 1ms
memory: 3840kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDBCDB...

output:

909918599

result:

ok 1 number(s): "909918599"

Test #27:

score: 0
Accepted
time: 2ms
memory: 4708kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

output:

946785739

result:

ok 1 number(s): "946785739"

Test #28:

score: 0
Accepted
time: 0ms
memory: 6224kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

output:

602280332

result:

ok 1 number(s): "602280332"

Test #29:

score: 0
Accepted
time: 0ms
memory: 7176kb

input:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

output:

46400062

result:

ok 1 number(s): "46400062"

Test #30:

score: 0
Accepted
time: 0ms
memory: 3780kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...

output:

713574388

result:

ok 1 number(s): "713574388"

Test #31:

score: 0
Accepted
time: 1ms
memory: 3888kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...

output:

821458320

result:

ok 1 number(s): "821458320"

Test #32:

score: 0
Accepted
time: 4ms
memory: 7180kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...

output:

46400062

result:

ok 1 number(s): "46400062"

Test #33:

score: 0
Accepted
time: 0ms
memory: 7044kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...

output:

527809091

result:

ok 1 number(s): "527809091"

Test #34:

score: 0
Accepted
time: 4ms
memory: 7068kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD...

output:

511600019

result:

ok 1 number(s): "511600019"

Test #35:

score: 0
Accepted
time: 0ms
memory: 3668kb

input:

ABCDABCBBACBABACAACCBBCACCACCBBBCACAACABCBCACBBABBCBCCCCBCBABCCACBABCCACBCCBCCACBCBCCCBBCBACABCCCACBAABCCBBCBBBCBABBCBCCABCCBBBCABBACCCCBCABAACCABBBABAAACCACCCCAABCABCCABABBAACAACACAACAACCBACCACABCBBACCBBCACCBACBCAACABAABCBABBBBBCCCBBCAACAACACBACBABABACABBCAABCBABABAABABACACAACBCBAABABCCABACBBACBCAC...

output:

5089

result:

ok 1 number(s): "5089"

Test #36:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABABACCABBCABBCACCACABBCBBCBACBCCBCBCABCBCBBACCACABCACABCCBBCBBCCABABBCCBAABAACBCACBABCACCCCCCCCACBCAACBABACCCAABABAACCBAAABABBAACAB...

output:

803111431

result:

ok 1 number(s): "803111431"

Extra Test:

score: 0
Extra Test Passed