QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#320217#8211. Enumerating Substringsucup-team987#AC ✓124ms18880kbC++2016.7kb2024-02-03 14:40:162024-02-03 14:40:16

Judging History

你现在查看的是最新测评结果

  • [2024-02-03 14:40:16]
  • 评测
  • 测评结果:AC
  • 用时:124ms
  • 内存:18880kb
  • [2024-02-03 14:40:16]
  • 提交

answer

/**
 * date   : 2024-02-03 15:40:05
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};





using namespace std;

// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};


//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;

using namespace Nyaan;

void q() {
  inl(N, M, K);
  mint ans = 0;

  // K 個から i 種の色を選ぶ
  vm choose(M + 10);
  choose[0] = 1;
  rep1(i, sz(choose) - 1) choose[i] = choose[i - 1] * (K + 1 - i) * C.inv(i);
  trc(choose);

  // ちょうど i 種の文字を使って, j 文字の文字列を得る方法の通り数
  vvm dp(M + 10, vm(M + 10));
  dp[0][0] = 1;
  rep1(i, M + 3) rep(j, M + 3) {
    if (j >= 1) dp[i][j] += dp[i - 1][j - 1] * C(j, 1);
    if (j >= 2) dp[i][j] += dp[i - 1][j - 2] * C(j, 2);
  }

  // P の全通り
  mint al = 0;
  // i 色選ぶ
  rep1(i, M) al += choose[i] * dp[i][M];
  trc(al);

  // q = m - period
  for (int q = 1; q <= M / 2; q++) {
    // q 文字被りがある
    mint cur = 0;
    reg(i, q, M+1) {
      // i 色選ぶ, そこからさらに q 色選ぶ
      cur += choose[i] * C(i, q) * dp[i - q][M - 2 * q];
    }
    cur *= C.fac(q);
    al -= cur;
    for (int i = 1;; i++) {
      int len = (M - q) * i + q;
      if (len > N) break;
      ans += mint{K}.pow(N - len) * cur * (N - len + 1) * (i % 2 ? 1 : -1);
    }
    trc(ans);
  }
  trc(al);
  // all
  ans += mint{K}.pow(N - M) * (N - M + 1) * al;

  out(ans);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3572kb

input:

4 2 3

output:

228

result:

ok 1 number(s): "228"

Test #2:

score: 0
Accepted
time: 124ms
memory: 18880kb

input:

999999 1999 12345678

output:

52352722

result:

ok 1 number(s): "52352722"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

7 4 2

output:

182

result:

ok 1 number(s): "182"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

4 3 4

output:

480

result:

ok 1 number(s): "480"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3576kb

input:

3 1 1

output:

3

result:

ok 1 number(s): "3"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3824kb

input:

5 5 1

output:

0

result:

ok 1 number(s): "0"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3804kb

input:

7 4 3

output:

5784

result:

ok 1 number(s): "5784"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

5 2 4

output:

3932

result:

ok 1 number(s): "3932"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

8 2 2

output:

1522

result:

ok 1 number(s): "1522"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

8 1 2

output:

2048

result:

ok 1 number(s): "2048"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3672kb

input:

7 5 3

output:

2430

result:

ok 1 number(s): "2430"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3868kb

input:

10 4 3

output:

272004

result:

ok 1 number(s): "272004"

Test #13:

score: 0
Accepted
time: 43ms
memory: 4640kb

input:

675978 614 2

output:

0

result:

ok 1 number(s): "0"

Test #14:

score: 0
Accepted
time: 12ms
memory: 3660kb

input:

244613 38 1

output:

0

result:

ok 1 number(s): "0"

Test #15:

score: 0
Accepted
time: 44ms
memory: 11976kb

input:

186293 1462 1

output:

0

result:

ok 1 number(s): "0"

Test #16:

score: 0
Accepted
time: 12ms
memory: 6220kb

input:

24867 886 1

output:

0

result:

ok 1 number(s): "0"

Test #17:

score: 0
Accepted
time: 69ms
memory: 7440kb

input:

976164 1014 2

output:

0

result:

ok 1 number(s): "0"

Test #18:

score: 0
Accepted
time: 11ms
memory: 3616kb

input:

179356 2 716844809

output:

577866092

result:

ok 1 number(s): "577866092"

Test #19:

score: 0
Accepted
time: 33ms
memory: 3920kb

input:

621001 130 310625363

output:

892869197

result:

ok 1 number(s): "892869197"

Test #20:

score: 0
Accepted
time: 50ms
memory: 5992kb

input:

678862 850 754662812

output:

582264789

result:

ok 1 number(s): "582264789"

Test #21:

score: 0
Accepted
time: 52ms
memory: 7056kb

input:

650845 978 348443366

output:

825425732

result:

ok 1 number(s): "825425732"

Test #22:

score: 0
Accepted
time: 39ms
memory: 4008kb

input:

669914 402 87448112

output:

318098088

result:

ok 1 number(s): "318098088"

Test #23:

score: 0
Accepted
time: 61ms
memory: 4408kb

input:

998593 530 681228665

output:

408255654

result:

ok 1 number(s): "408255654"

Test #24:

score: 0
Accepted
time: 81ms
memory: 18576kb

input:

369361 1954 125266115

output:

509912384

result:

ok 1 number(s): "509912384"

Test #25:

score: 0
Accepted
time: 79ms
memory: 10812kb

input:

900226 1378 424079373

output:

406320917

result:

ok 1 number(s): "406320917"

Test #26:

score: 0
Accepted
time: 52ms
memory: 12296kb

input:

334887 1506 17859926

output:

503264679

result:

ok 1 number(s): "503264679"

Test #27:

score: 0
Accepted
time: 57ms
memory: 4472kb

input:

936048 544 53978328

output:

548647866

result:

ok 1 number(s): "548647866"

Test #28:

score: 0
Accepted
time: 33ms
memory: 9684kb

input:

152789 1264 792983073

output:

839541707

result:

ok 1 number(s): "839541707"

Test #29:

score: 0
Accepted
time: 75ms
memory: 10988kb

input:

714493 1392 91796331

output:

721071046

result:

ok 1 number(s): "721071046"

Test #30:

score: 0
Accepted
time: 25ms
memory: 5704kb

input:

269571 816 830801077

output:

330064211

result:

ok 1 number(s): "330064211"

Test #31:

score: 0
Accepted
time: 63ms
memory: 6844kb

input:

845120 944 424581630

output:

348960190

result:

ok 1 number(s): "348960190"

Test #32:

score: 0
Accepted
time: 27ms
memory: 3812kb

input:

533990 368 163586376

output:

522092095

result:

ok 1 number(s): "522092095"

Test #33:

score: 0
Accepted
time: 66ms
memory: 16088kb

input:

181707 1792 462399634

output:

373795106

result:

ok 1 number(s): "373795106"

Test #34:

score: 0
Accepted
time: 88ms
memory: 17840kb

input:

417349 1920 761212891

output:

587051329

result:

ok 1 number(s): "587051329"

Test #35:

score: 0
Accepted
time: 59ms
memory: 10464kb

input:

526583 1344 500217637

output:

108767800

result:

ok 1 number(s): "108767800"

Test #36:

score: 0
Accepted
time: 58ms
memory: 5432kb

input:

867054 769 93998191

output:

239123369

result:

ok 1 number(s): "239123369"

Extra Test:

score: 0
Extra Test Passed