QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#320047 | #8209. Curly Palindromes | ucup-team987# | AC ✓ | 1ms | 3828kb | C++23 | 6.8kb | 2024-02-03 13:28:21 | 2024-02-03 13:28:22 |
Judging History
answer
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using P = kactl::Point<i64>;
void solve() {
int n;
scan(n);
std::vector<P> points(n);
std::string s(n, '?');
for (const int i : rep(n)) {
scan(points[i].x, points[i].y, s[i]);
}
{
bool unique = true;
for (const int i : rep(n)) {
for (const int j : rep(i)) {
if (s[i] == s[j]) {
unique = false;
}
}
}
if (unique) {
print(1);
return;
}
}
for (const int i : rep(n)) {
for (const int j : rep(n)) {
if (s[i] != s[j]) {
continue;
}
for (const int k : rep(n)) {
if ((points[i] - points[k]).cross(points[j] - points[k])) {
print("Infinity");
return;
}
}
}
}
print(2);
}
} // namespace
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
solve();
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
// https://github.com/kth-competitive-programming/kactl
namespace kactl {
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
template <class T>
int sgn(T x) {
return (x > 0) - (x < 0);
}
template <class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x = 0, T y = 0) : x(x), y(y) {}
bool operator<(P p) const { return tie(x, y) < tie(p.x, p.y); }
bool operator==(P p) const { return tie(x, y) == tie(p.x, p.y); }
P operator+(P p) const { return P(x + p.x, y + p.y); }
P operator-(P p) const { return P(x - p.x, y - p.y); }
P operator*(T d) const { return P(x * d, y * d); }
P operator/(T d) const { return P(x / d, y / d); }
T dot(P p) const { return x * p.x + y * p.y; }
T cross(P p) const { return x * p.y - y * p.x; }
T cross(P a, P b) const { return (a - *this).cross(b - *this); }
T dist2() const { return x * x + y * y; }
double dist() const { return sqrt((double)dist2()); }
double angle() const { return atan2(y, x); }
P unit() const { return *this / dist(); }
P perp() const { return P(-y, x); }
P normal() const { return perp().unit(); }
P rotate(double a) const { return P(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a)); }
friend ostream& operator<<(ostream& os, P p) { return os << "(" << p.x << "," << p.y << ")"; }
};
} // namespace kactl
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x && (x = std::forward<U>(y), true);
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y && (x = std::forward<U>(y), true);
}
template <std::signed_integral T = int>
T inf() {
T ret;
std::memset(&ret, 0x3f, sizeof(ret));
return ret;
}
template <std::floating_point T>
T inf() {
return std::numeric_limits<T>::infinity();
}
template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T>
concept Tuple = std::__is_tuple_like<T>::value && !Range<T>;
namespace std {
istream& operator>>(istream& is, Range auto&& r) {
for (auto&& e : r) {
is >> e;
}
return is;
}
istream& operator>>(istream& is, Tuple auto&& t) {
return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
ostream& operator<<(ostream& os, Range auto&& r) {
for (string_view sep = ""; auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
ostream& operator<<(ostream& os, Tuple auto&& t) {
const auto f = [&](auto&... xs) -> ostream& {
[[maybe_unused]] string_view sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
} // namespace std
#define DEF_INC_OR_DEC(op) \
auto& operator op(Range auto&& r) { \
for (auto&& e : r) { \
op e; \
} \
return r; \
} \
auto& operator op(Tuple auto&& t) { \
std::apply([](auto&... xs) { (op xs, ...); }, t); \
return t; \
}
DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)
#undef DEF_INC_OR_DEC
void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }
#define FWD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
template <class F>
class fix {
public:
explicit fix(F f) : f_(std::move(f)) {}
decltype(auto) operator()(auto&&... xs) const { return f_(std::ref(*this), FWD(xs)...); }
private:
F f_;
};
template <class T>
concept LambdaExpr = std::is_placeholder_v<std::remove_cvref_t<T>> != 0 ||
std::is_bind_expression_v<std::remove_cvref_t<T>>;
auto operator++(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)++; }, FWD(x));
}
auto operator--(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)--; }, FWD(x));
}
#define DEF_UNARY_OP(op) \
auto operator op(LambdaExpr auto&& x) { \
return std::bind([](auto&& x) -> decltype(auto) { return op FWD(x); }, FWD(x)); \
}
DEF_UNARY_OP(++)
DEF_UNARY_OP(--)
DEF_UNARY_OP(+)
DEF_UNARY_OP(-)
DEF_UNARY_OP(~)
DEF_UNARY_OP(!)
DEF_UNARY_OP(*)
DEF_UNARY_OP(&)
#undef DEF_UNARY_OP
#define DEF_BINARY_OP(op) \
template <class T1, class T2> \
requires LambdaExpr<T1> || LambdaExpr<T2> \
auto operator op(T1&& x, T2&& y) { \
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x) op FWD(y); }, \
FWD(x), FWD(y)); \
}
DEF_BINARY_OP(+=)
DEF_BINARY_OP(-=)
DEF_BINARY_OP(*=)
DEF_BINARY_OP(/=)
DEF_BINARY_OP(%=)
DEF_BINARY_OP(^=)
DEF_BINARY_OP(&=)
DEF_BINARY_OP(|=)
DEF_BINARY_OP(<<=)
DEF_BINARY_OP(>>=)
DEF_BINARY_OP(+)
DEF_BINARY_OP(-)
DEF_BINARY_OP(*)
DEF_BINARY_OP(/)
DEF_BINARY_OP(%)
DEF_BINARY_OP(^)
DEF_BINARY_OP(&)
DEF_BINARY_OP(|)
DEF_BINARY_OP(<<)
DEF_BINARY_OP(>>)
DEF_BINARY_OP(==)
DEF_BINARY_OP(!=)
DEF_BINARY_OP(<)
DEF_BINARY_OP(>)
DEF_BINARY_OP(<=)
DEF_BINARY_OP(>=)
DEF_BINARY_OP(&&)
DEF_BINARY_OP(||)
#undef DEF_BINARY_OP
template <class T1, class T2>
requires LambdaExpr<T1> || LambdaExpr<T2>
auto at(T1&& x, T2&& y) {
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x)[FWD(y)]; }, FWD(x),
FWD(y));
}
template <int I>
auto get(LambdaExpr auto&& x) {
return std::bind([](auto&& x) -> decltype(auto) { return std::get<I>(FWD(x)); }, FWD(x));
}
inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
using namespace std::literals;
using namespace std::placeholders;
namespace ranges = std::ranges;
namespace views = std::views;
using i64 = std::int64_t;
#endif // __INCLUDE_LEVEL__
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3600kb
input:
4 0 0 o 1 1 c 2 2 p 3 3 c
output:
2
result:
ok single line: '2'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3552kb
input:
3 2 3 e 3 2 e 8 9 e
output:
Infinity
result:
ok single line: 'Infinity'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3544kb
input:
3 0 0 p 1 1 c 2 2 o
output:
1
result:
ok single line: '1'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3548kb
input:
3 1000000000 1000000000 a 0 1000000000 b 1000000000 0 a
output:
Infinity
result:
ok single line: 'Infinity'
Test #5:
score: 0
Accepted
time: 0ms
memory: 3572kb
input:
5 10 0 a 20 0 b 30 0 c 41 0 d 42 0 e
output:
1
result:
ok single line: '1'
Test #6:
score: 0
Accepted
time: 0ms
memory: 3544kb
input:
6 999999999 1000000000 b 0 0 a 1 1 a 2 2 c 3 3 d 4 4 e
output:
Infinity
result:
ok single line: 'Infinity'
Test #7:
score: 0
Accepted
time: 0ms
memory: 3828kb
input:
1 52524 6287 o
output:
1
result:
ok single line: '1'
Test #8:
score: 0
Accepted
time: 0ms
memory: 3792kb
input:
100 620277501 352211578 a 588745387 204868067 a 279087773 862840409 a 368942847 32429835 a 986161321 811576403 a 108066135 22119129 a 854047430 512772131 a 196877261 824967276 a 467809712 903492464 a 549499819 662329823 a 358024530 364859507 a 323528347 87306983 a 346602511 829302399 a 216164493 243...
output:
Infinity
result:
ok single line: 'Infinity'
Test #9:
score: 0
Accepted
time: 0ms
memory: 3800kb
input:
100 964906060 545884156 b 525844995 678718384 a 767874103 529057847 b 335899480 961060244 b 458611128 578152716 b 449062933 779433747 a 672526007 895103745 b 111902255 436806217 a 873636242 773662394 a 250185459 522336127 a 975489206 77297854 b 54583166 952092302 a 863604349 909716224 a 70170689 533...
output:
Infinity
result:
ok single line: 'Infinity'
Test #10:
score: 0
Accepted
time: 0ms
memory: 3792kb
input:
100 197441358 388148939 b 374082779 922588431 b 545855650 531926491 b 953289473 249626190 a 997668672 445922624 b 941714598 963970889 a 252303702 946260915 c 705178416 744961339 a 889814639 633539049 b 526449032 53699804 b 937365752 742338401 b 294384909 349114633 b 245948038 979810742 c 46734037 30...
output:
Infinity
result:
ok single line: 'Infinity'
Test #11:
score: 0
Accepted
time: 0ms
memory: 3716kb
input:
100 388507460 599009943 b 222320564 871491185 b 323837196 829762427 d 202083245 906788357 c 200289725 313692532 c 65770043 517104251 d 905710326 292385376 b 3487284 126745388 b 495927620 829852193 b 97679895 880030775 b 677903935 407378948 d 534186652 672508037 b 964728216 976276332 b 391893605 5597...
output:
Infinity
result:
ok single line: 'Infinity'
Test #12:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
100 916010051 146307434 c 480623765 410328522 d 28189815 127598363 c 745844310 195354303 c 739347268 591527857 d 484792781 775270322 b 190520730 638509838 d 6828862 434900510 b 512106017 321132628 e 668910759 411394452 b 639780481 72419495 a 773988394 364497659 c 347071905 341338141 d 368456952 5180...
output:
Infinity
result:
ok single line: 'Infinity'
Test #13:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
100 86229674 966475154 g 188905509 869037044 j 206431319 885238671 g 384203494 608011484 b 94907195 845681979 j 93491181 751753218 f 658592436 874867662 j 390873056 182636414 b 313350178 5306341 j 964520327 884419573 c 616180319 281427186 e 506244230 796896398 b 427455351 844237339 f 78090262 517379...
output:
Infinity
result:
ok single line: 'Infinity'
Test #14:
score: 0
Accepted
time: 0ms
memory: 3572kb
input:
100 215977786 124594064 t 330805101 191632694 a 89113834 355297431 h 763543468 766857893 i 129574380 326152621 t 980011509 580824171 l 593104211 610936942 p 433305160 169599834 n 169733556 636573400 d 529043807 454466372 h 898931244 35490902 l 277816100 810116698 c 35985918 405195648 i 188992394 893...
output:
Infinity
result:
ok single line: 'Infinity'
Test #15:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
100 708120351 620407913 n 535329934 654852971 t 609745260 478749536 q 362094763 276915210 s 280981242 647870195 n 936373080 162431905 h 260497437 466345348 o 181689176 124319222 n 488142303 321448453 b 39367382 527550314 k 301142721 730766894 n 126691970 634927413 k 412986447 268439483 x 227790067 4...
output:
Infinity
result:
ok single line: 'Infinity'
Test #16:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
26 526735598 478961006 a 531191531 475454507 b 378204498 595844306 c 442072871 545584487 d 525250287 480129839 e 498514689 501168833 f 568324306 446233682 g 470293780 523376660 h 554956507 456753179 i 455440670 535064990 j 397513541 580649477 k 612883636 411168692 l 513367799 489480503 m 465837847 5...
output:
1
result:
ok single line: '1'
Test #17:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
100 548848602 549471818 a 320148329 317853761 b 508881564 508994876 c 704275972 706882148 d 371217322 369574298 e 597697204 598943636 f 624341896 625928264 g 380098886 378569174 h 313487156 311107604 i 553289384 553969256 j 466694135 466269215 k 406743578 405553802 l 488898045 488756405 m 653206979 ...
output:
2
result:
ok single line: '2'
Test #18:
score: 0
Accepted
time: 1ms
memory: 3796kb
input:
100 509098504 507901696 w 513647756 511852544 t 638752186 620500864 f 565964154 557287296 e 438585098 446663552 s 283910530 312334720 l 702441714 675812736 g 295283660 322211840 h 561414902 553336448 b 434035846 442712704 g 688793958 663960192 n 447683602 454565248 o 320304546 343941504 c 540943268 ...
output:
2
result:
ok single line: '2'
Extra Test:
score: 0
Extra Test Passed