QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#317622#5067. Two Wallslmf_upWA 0ms4060kbC++2018.1kb2024-01-29 10:11:012024-01-29 10:11:01

Judging History

你现在查看的是最新测评结果

  • [2024-01-29 10:11:01]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:4060kb
  • [2024-01-29 10:11:01]
  • 提交

answer

#include<bits/stdc++.h>

#define cp const point &
#define cl const line &
#define cc const circle &
#define LD long double
std::mt19937 rnd(time(0));
const LD eps = 1e-8;
const LD pi = std::numbers::pi;
const LD INF = 1e9;

int sgn(LD x)
{
    return x > eps ? 1 : (x < -eps ? -1 : 0);
}

LD sqr(LD x)
{ return x * x; }

struct point
{
    LD x, y;

    point operator+(cp a) const
    { return {x + a.x, y + a.y}; }

    point operator-(cp a) const
    { return {x - a.x, y - a.y}; }

    point operator*(LD t) const
    { return {x * t, y * t}; }

    point operator/(LD t) const
    { return {x / t, y / t}; }

    point rot(LD t) const
    { return {x * cos(t) - y * sin(t), x * sin(t) + y * cos(t)}; }

    point rot90() const
    { return {-y, x}; }

    LD len2() const
    { return x * x + y * y; }

    LD len() const
    { return sqrtl(x * x + y * y); }

    point unit() const
    {
        double d = len();
        return {x / d, y / d};
    }
    int on_up()//b不判(0,0)
    {
        return sgn(y)==1||(sgn(y)==0&&sgn(x)>0);
    }
    void print()
    {
        std::cout<<x<<' '<<y<<std::endl;
    }
    void read()
    {
        std::cin>>x>>y;
    }
    friend bool operator<(cp a, cp b)
    {
        return a.x == b.x ? a.y < b.y : a.x < b.x;
    }

    friend bool operator>(cp a, cp b)
    {
        return a.x == b.x ? a.y > b.y : a.x > b.x;
    }
};

LD dot(cp a, cp b);

bool operator==(cp a, cp b)
{
    return !sgn(dot(a - b, a - b));
}

LD dis(cp a, cp b)//两点距离
{
    return sqrtl(sqr(a.x - b.x) + sqr(a.y - b.y));
}

LD dot(cp a, cp b)//点乘
{
    return a.x * b.x + a.y * b.y;
}

LD det(cp a, cp b)//叉乘
{
    return a.x * b.y - b.x * a.y;
}

bool turn_left(cp a, cp b, cp c)//判断ba是否逆时针转少于180°到ca
{
    return sgn(det(b - a, c - a)) > 0;//大于是严格凸包
}

struct line
{
    point s, t;
    line() {}
    line(point a, point b) : s(a), t(b)
    {}
    void read()
    {
        s.read(),t.read();
    }

};

struct circle
{
    point c;
    LD r;

    circle()
    {}

    circle(point C, LD R)
    { c = C, r = R; }
};

bool in_circle(cp a, cc b)
{
    return sgn((b.c - a).len() - b.r) <= 0;
}

circle make_circle(point u, point v)
{
    point p = (u + v) / 2;
    return circle(p, (u - p).len());
}

circle make_circle(cp a, cp b, cp c)
{
    point p = b - a, q = c - a;
    point s(dot(p, p) / 2, dot(q, q) / 2);
    LD d = det(p, q);
    p = point(det(s, point(p.y, q.y)), det(point(p.x, q.x), s)) / d;
    return circle(a + p, p.len());
}

circle min_circle(std::vector<point> p)
{
    circle ret(p[0], 0);
    std::shuffle(p.begin(), p.end(), rnd);
    int len = p.size();
    for (int i = 0; i < len; i++)
        if (!in_circle(p[i], ret))
        {
            ret = circle(p[i], 0);
            for (int j = 0; j < i; j++)
                if (!in_circle(p[j], ret))
                {
                    ret = make_circle(p[j], p[i]);
                    for (int k = 0; k < j; ++k)
                        if (!in_circle(p[k], ret))
                            ret = make_circle(p[i], p[j], p[k]);
                }
        }
    return ret;
}


bool same_dir(cl a, cl b)//判断方向是否一致
{
    return sgn(det(b.t - b.s, a.t - a.s)) == 0 && sgn(dot(b.t - b.s, a.t - a.s)) > 0;
}

bool point_on_line(cp a, cl l)//判断点是否在直线上
{
    return sgn(det(a-l.s, l.t - l.s)) == 0;
}

bool point_on_segment(cp a, cl l)//判断点是否在线段上
{
    return point_on_line(a, l) && sgn(dot(l.s - a, l.t-a )) <= 0;//(<=代表可以端点
}

bool two_side(cp a, cp b, cl c)//判断两个点是否在线段的两边
{
    return sgn(det(a - c.s, c.t - c.s)) * sgn(det(b - c.s, c.t - c.s)) < 0;
}

bool intersect_judge_strict(cl a, cl b)
{
    return two_side(a.s,a.t,b)&& two_side(b.s,b.t,a);
}
bool intersect_judge(cl a, cl b)
{//判断两个线段是否相交
    if (point_on_segment(a.s, b) || point_on_segment(a.t, b) || point_on_segment(b.s, a) ||
        point_on_segment(b.t, a))
        return true;
    return intersect_judge_strict(a,b);
}


point line_intersect(cl a, cl b)
{//得到两线段的交点
    double s1 = det(a.t - a.s, b.s - a.s);
    double s2 = det(a.t - a.s, b.t - a.s);
    return (b.s * s2 - b.t * s1) / (s2 - s1);
}

bool point_on_ray(cp a, cl b)
{//判断点是否在射线上
    return sgn(det(a - b.s, b.t - b.s)) == 0 && sgn(dot(a - b.s, b.t - b.s)) >= 0;
}

bool ray_intersect_judge(line a, line b)//判断两射线是否相交
{
    double s1, s2;
    s1 = det(a.t - a.s, b.s - a.s);
    s2 = det(a.t - a.s, b.t - a.s);
    if (sgn(s1) == 0 && sgn(s2) == 0)
        return sgn(dot(a.t - a.s, b.s - a.s)) >= 0 || sgn(dot(b.t - b.s, a.s - b.s));
    if (!sgn(s1 - s2) || sgn(s1) == sgn(s2 - s1))return 0;
    std::swap(a, b);
    s1 = det(a.t - a.s, b.s - a.s);
    s2 = det(a.t - a.s, b.t - a.s);
    return sgn(s1) != sgn(s2 - s1);
}

LD point_to_line(cp a, cl b)
{//点到直线的距离
    return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
}

point project_to_line(cp a, cl b)
{//得到点在线上的投影
    return b.s + (b.t - b.s) * (dot(a - b.s, b.t - b.s) / (b.t - b.s).len2());
}

LD point_to_segment(cp a, cl b)
{//点到线段的距离
    if (b.s == b.t)
        return dis(a, b.s);
    if (sgn(dot(b.s - a, b.t - b.s)) * sgn(dot(b.t - a, b.t - b.s)) <= 0)
        return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
    return std::min(dis(a, b.s), dis(a, b.t));
}
std::vector<point>line_circle_intersect(cl a,cc b)
{//返回线与圆的交点
    if(sgn(point_to_segment(b.c,a)-b.r)>0)
        return std::vector<point>();
    LD x=sqrtl(sqr(b.r)- sqr(point_to_line(b.c,a)));
    return std::vector<point>({project_to_line(b.c,a)+(a.s-a.t).unit()*x, project_to_line(b.c,a)-(a.s-a.t).unit()*x});
}
LD circle_intersect_area(cc a,cc b){
    LD d=dis(a.c,b.c);
    if(sgn(d-(a.r+b.r))>=0)return 0;
    if(sgn(d- abs(a.r-b.r))<=0){
        LD r=std::min(a.r,b.r);
        return r*r*pi;
    }
    LD x=(d*d+a.r*a.r-b.r*b.r)/(2*d),
    t1=acosl(std::min((LD)1,std::max((LD)-1,x/a.r))),
    t2=acosl(std::min((LD)1,std::max((LD)-1,(d-x)/b.r)));
    return sqr(a.r)*t1+ sqr(b.r)*t2-d*a.r*sinl(t1);
}
std::vector<point> circle_intersect(cc a,cc b)
{
    if(a.c==b.c||sgn(dis(a.c,b.c)-a.r-b.r)>0||sgn(dis(a.c,b.c)-abs(a.r-b.r))<0)
        return {};
    point r=(b.c-a.c).unit();
    LD d=dis(a.c,b.c);
    LD x=((sqr(a.r)-sqr(b.r))/d+d)/2;
    LD h=sqrtl(sqr(a.r)-sqr(x));
    if(sgn(h)==0)return {a.c+r*x};
    return {a.c+r*x+r.rot90()*h,a.c+r*x-r.rot90()*h};
}
std::vector<point>tangent(cp a,cc b)
{
    circle p= make_circle(a,b.c);
     return circle_intersect(p,b);
}
std::vector<line>extangent(cc a,cc b)
{
    std::vector<line>ret;
    if(sgn(dis(a.c,b.c)-abs(a.r-b.r))<=0)return ret;
    if(sgn(a.r-b.r)==0)
    {
        point dir=b.c-a.c;
        dir=(dir*a.r/dir.len()).rot90();
        ret.push_back(line(a.c+dir,b.c+dir));
        ret.push_back(line(a.c-dir,b.c-dir));
    }
    else{
        point p=(b.c*a.r-a.c*b.r)/(a.r-b.r);
        std::vector pp= tangent(p,a),qq= tangent(p,b);
        if(pp.size()==2&&qq.size()==2)
        {
            if(sgn(a.r-b.r)<0)
                std::swap(pp[0],pp[1]),std::swap(qq[0],qq[1]);
            ret.push_back(line(pp[0],qq[0]));
            ret.push_back(line(pp[1],qq[1]));
        }
    }
    return ret;
}
std::vector<line>intangeent(cc a,cc b)
{
    std::vector<line> ret;
    point p=(b.c*a.r+a.c*b.r)/(a.r+b.r);
    std::vector pp= tangent(p,a),qq= tangent(p,b);
    if(pp.size()==2&&qq.size()==2){
        ret.push_back(line(pp[0],qq[0]));
        ret.push_back(line(pp[1],qq[1]));
    }
    return ret;
}
std::vector<point>cut(const std::vector<point>&c,line p){
    std::vector<point>ret;
    if(c.empty())return ret;
    int len=c.size();
    for(int i=0;i<len;i++)
    {
        int j=(i+1)%len;
        if(turn_left(p.s,p.t,c[i]))ret.push_back(c[i]);
        if(two_side(c[i],c[j],p))
            ret.push_back(line_intersect(p,line(c[i],c[j])));
    }
    return ret;
}
std::vector<point> convex_hull(std::vector<point> a)
{//凸包,字典序
    int n = (int) a.size(), cnt = 0;
    if (n < 2) return a;
    std::sort(a.begin(), a.end()); // less<pair>
    std::vector<point> ret;
    for (int i = 0; i < n; ++i)
    {
        while (cnt > 1
               && !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
            --cnt, ret.pop_back();
        ++cnt, ret.push_back(a[i]);
    }
    int fixed = cnt;
    for (int i = n - 2; i >= 0; --i)
    {
        while (cnt > fixed
               && !turn_left(ret[cnt - 1], a[i], ret[cnt - 2]))
            --cnt, ret.pop_back();
        ++cnt, ret.push_back(a[i]);
    }
    ret.pop_back();
    return ret;
}

std::vector<point> minkovski(std::vector<std::vector<point>> a)
{
    if (a[0].size() == 1)
        return a[1];
    if (a[1].size() == 1)
        return a[0];
    for (int i = 0; i < 2; i++)a[i].push_back(a[i].front());
    int i[2] = {0, 0}, len[2] = {(int) a[0].size() - 1, (int) a[1].size() - 1};
    std::vector<point> ret;
    ret.push_back(a[0][0] + a[1][0]);
    do
    {
        int d = sgn(det(a[1][i[1] + 1] - a[1][i[1]], a[0][i[0] + 1] - a[0][i[0]])) >= 0;
        ret.push_back(a[d][i[d] + 1] - a[d][i[d]] + ret.back());
        i[d] = (i[d] + 1) % len[d];
    }
    while (i[0] || i[1]);
    return ret;
}

struct Convex
{
    int n;
    std::vector<point> a, upper, lower;

    Convex(std::vector<point> _a) : a(_a)
    {
        n = a.size();
        int k = 0;
        for (int i = 1; i < n; i++)if (a[k] < a[i])k = i;
        for (int i = 0; i <= k; i++) lower.push_back(a[i]);
        for (int i = k; i < n; i++) upper.push_back(a[i]);
        upper.push_back(a[0]);
    }

    std::pair<LD, int> get_tan(std::vector<point> &con, point vec)
    {
        int l = 0, r = (int) con.size() - 2;
        for (; l + 1 < r;)
        {
            int mid = (l + r) / 2;
            if (sgn(det(con[mid + 1] - con[mid], vec)) > 0)r = mid;
            else l = mid;
        }
        return std::max(std::make_pair(det(vec, con[r]), r), std::make_pair(det(vec, con[0]), 0));
    }

    void upd_tan(cp p, int id, int &i0, int &i1)
    {
        if (sgn(det(a[i0] - p, a[id] - p)) > 0) i0 = id;
        if (sgn(det(a[i1] - p, a[id] - p)) < 0) i1 = id;
    }

    void search(int l, int r, point p, int &i0, int &i1)
    {
        if (l == r)return;
        upd_tan(p, l % n, i0, i1);
        int sl = sgn(det(a[l % n] - p, a[(l + 1) % n] - p));
        for (; l + 1 < r;)
        {
            int mid = (l + r) / 2;
            int smid = sgn(det(a[mid % n] - p, a[(mid + 1) % n] - p));
            if (smid == sl)l = mid;
            else r = mid;
        }
        upd_tan(p, r % n, i0, i1);
    }

    int search(point u, point v, int l, int r)
    {
        int sl = sgn(det(v - u, a[l % n] - u));
        for (; l + 1 < r;)
        {
            int mid = (l + r) / 2;
            int smid = sgn(det(v - u, a[mid % n] - u));
            if (smid == sl) l = mid;
            else r = mid;
        }
        return l % n;
    }

    //判定点是否在凸包内,在边界返回true
    bool contain(point p)
    {
        if (p.x < lower[0].x || p.x > lower.back().x)return false;
        int id = std::lower_bound(lower.begin(), lower.end(), point(p.x, -INF)) - lower.begin();
        if (lower[id].x == p.x)
        {
            if (lower[id].y > p.y)return false;
        }
        else if (det(lower[id - 1] - p, lower[id] - p) < 0)
            return false;
        id = std::lower_bound(upper.begin(), upper.end(), point(p.x, INF), std::greater<point>()) - upper.begin();
        if (upper[id].x == p.x)
        {
            if (upper[id].y < p.y)return false;
        }
        else if (det(upper[id - 1] - p, upper[id] - p) < 0)
            return false;
        return true;
    }
    bool get_tan(point p,int &i0,int &i1){// 求点 p 关于凸包的两个切点, 如果在凸包外则有序返回编号, 共线的多个切点返回任意一个, 否则返回 false
        i0=i1=0;
        int id=int(std::lower_bound(lower.begin(),lower.end(),p)-lower.begin());
        search(0,id,p,i0,i1);
        search(id,(int)lower.size(),p,i0,i1);
        id=int(std::lower_bound(upper.begin(),upper.end(),p,std::greater<point>())-upper.begin());
        search((int)lower.size()-1,(int)lower.size()-1+id,p,i0,i1);
        search((int)lower.size()-1+id,(int)lower.size()-1+(int)upper.size(),p,i0,i1);
        return true;
    }
    // 求凸包上和向量 vec 叉积最大的点, 返回编号, 共线的多个切点返回任意一个
    int get_tan(point vec)
    {
        std::pair<LD,int>ret= get_tan(upper,vec);
        ret.second=(ret.second+(int)lower.size()-1)%n;
        ret=std::max(ret, get_tan(lower,vec));
        return ret.second;
    }
    // 求凸包和直线 u,v 的交点, 如果无严格相交返回 false. 如果有则是和 (i,next(i)) 的交点, 两个点无序, 交在点上不确定返回前后两条线段其中之一

    bool get_inter(point u,point v,int &i0,int &i1){
        int p0= get_tan(u-v),p1= get_tan(v-u);
        if(sgn(det(v-u,a[p0]-u))*sgn(det(v-u,a[p1]-u))<0)
        {
            if(p0>p1)std::swap(p0,p1);
            i0= search(u,v,p0,p1);
            i1= search(u,v,p1,p0+n);
            return true;
        }
        else return false;
    }
};
bool in_polygon(cp p,const std::vector<point>&po)
{
    int n=(int)po.size();int cnt=0;
    for(int i=0;i<n;i++)
    {
        point a=po[i],b=po[(i+1)%n];
        if(point_on_segment(p,line(a,b)))return true;
        int x=sgn(det(p-a,b-a)),y=sgn(a.y-p.y),z=sgn(b.y-p.y);
        if(x>0&&y<=0&&z>0)++cnt;
        if(x<0&&z<=0&&y>0)--cnt;

    }
    return cnt!=0;
}
bool In_Polygon(cp P,std::vector<point>&polygon)
{
    bool flag = false; //相当于计数
    point P1,P2; //多边形一条边的两个顶点
    int n=polygon.size();
    for(int i=0,j=n-1;i<n;j=i++)
    {
        //polygon[]是给出多边形的顶点
        P1 = polygon[i];
        P2 = polygon[j];
        if(point_on_segment(P,line(P1,P2)))return true;
        //前一个判断min(P1.y,P2.y)<P.y<=max(P1.y,P2.y)
        //这个判断代码我觉得写的很精妙 我网上看的 应该是大神模版
        //后一个判断被测点 在 射线与边交点 的左边
        if( (sgn(P1.y-P.y)>0 != sgn(P2.y-P.y)>0) && sgn(P.x - (P.y-P1.y)*(P1.x-P2.x)/(P1.y-P2.y)-P1.x)<0)
            flag = !flag;
    }
    return flag;
}
std::vector<point> Minkovski(std::vector<std::vector<point>> a)
{                                                            //闵可夫斯基和
    std::vector<point> S;
    int n = a[0].size(), m = a[1].size();
    std::vector<point> A(n ), B(m );
    for (int i = 0; i < n - 1; i++) A[i] = a[0][i + 1] - a[0][i];
    A[n - 1] = a[0][0] - a[0][n - 1];
    for (int i = 0; i < m - 1; i++) B[i] = a[1][i + 1] - a[1][i];
    B[m - 1] = a[1][0] - a[1][m - 1];                                                             //将两个凸包上的边向量都存入a,b中
    S.push_back(a[0][0] + a[1][0]);
    int p1 = 0, p2 = 0;
    while (p1 < n && p2 < m)
    {
        LD d = det(A[p1], B[p2]);
        if (d > 0)
            S.push_back(S.back()+A[p1++]);
        else if (d < 0)
            S.push_back(S.back()+B[p2++]);
        else
        {
            if(dot(A[p1],B[p1])>=0)
                S.push_back(S.back()+A[p1++]);
            else
            {
                auto [x,y]=A[p1];
                if(x>0)
                    S.push_back(S.back()+A[p1++]);
                else if(x<0)
                    S.push_back(S.back()+B[p2++]);
                else
                {
                    if(y>0)
                        S.push_back(S.back()+A[p1++]);
                    else S.push_back(S.back()+B[p2++]);
                }
            }
        }
    }
    while (p1 < n)
        S.push_back(S.back() + A[p1++]);
    while (p2 < m)
        S.push_back(S.back() + B[p2++]);
    return S;
}

void print(std::vector<point> res)
{
    std::cout << "print:\n";
    int cnt=0;
    for (auto [x, y]: res)
        std::cout <<++cnt<<' '<< x << ' ' << y << std::endl;
    std::cout << "end\n";
}

void solve()
{
    point p,q;
    p.read(),q.read();
    line li1 , li2;
    line li(p,q);
    li1.read(),li2.read();
    if(!intersect_judge(li,li1)&&!intersect_judge(li,li2))
    {
        std::cout<<0<<std::endl;
        return ;
    }
    if(!intersect_judge_strict(li1,li2))
    {
        std::cout<<1<<std::endl;
        return ;
    }
    point base= line_intersect(li1,li2);
    std::vector<point>pu;
    pu.push_back(p);
    pu.push_back(q);
    pu.push_back(li1.s),pu.push_back(li1.t);
    pu.push_back(li2.s),pu.push_back(li2.t);
    std::sort(pu.begin(),pu.end(),[&](auto x,auto y){
       point u=x-base,v=y-base;
       if(u.on_up()!=v.on_up())return u.on_up()<v.on_up();
       return det(u,v)>0;
    });
    int flag=0;
    for(int i=0;i<6;i++)
    {
        if((p==pu[i]||q==pu[i])&&(p==pu[(i+2)%6]||q==pu[(i+2)%6]))
        {
            flag=1;
            break;
        }
    }
    if(flag)
    {
        std::cout<<1<<std::endl;
        return ;
    }
    std::vector<line> lu;
    for(int i=0;i<6;i++)
    {
        if(p==pu[i])
        {
            lu.push_back(line(p,pu[(i+1)%6]));
            lu.push_back(line(p,pu[(i+5)%6]));
        }
        if(q==pu[i])
        {
            lu.push_back(line(q,pu[(i+1)%6]));
            lu.push_back(line(q,pu[(i+5)%6]));
        }
    }
    for(int i=0;i<4;i++)
    {
        for(int j=i+1;j<4;j++)
        {
            if(ray_intersect_judge(lu[i],lu[j]))
            {
                std::cout<<1<<std::endl;
                return ;
            }
        }
    }
    std::cout<<2<<std::endl;

}

int main()
{
    std::ios::sync_with_stdio(false);
    std::cin.tie(0),std::cout.tie(0);
    int T;
    T=1;
    std::cin>>T;
    while(T--)
        solve();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3928kb

input:

3
0 0
1 1
2 2 3 3
4 4 5 5
0 0
1 1
2 2 3 3
2 2 3 3
0 0
10 10
10 0 0 10
1 1 2 2

output:

0
0
1

result:

ok 3 number(s): "0 0 1"

Test #2:

score: -100
Wrong Answer
time: 0ms
memory: 4060kb

input:

2
-999999999 999999998
999999999 999999998
-1000000000 -1000000000 1000000000 1000000000
1000000000 -1000000000 -1000000000 1000000000
-999999999 999999998
999999999 999999998
-999999998 -999999998 1000000000 1000000000
999999998 -999999998 -1000000000 1000000000

output:

1
1

result:

wrong answer 1st numbers differ - expected: '2', found: '1'