QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#317507 | #8180. Bridge Elimination | ucup-team1134 | AC ✓ | 201ms | 4208kb | C++23 | 34.5kb | 2024-01-29 03:16:42 | 2024-01-29 03:16:42 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=2005,INF=1<<30;
// FPS 全部載せ
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint=atcoder::modint998244353;
vector<mint> prebat(vector<mint> S,int szsum){
int z = 1 << atcoder::internal::ceil_pow2(szsum-1);
auto res=S;
res.resize(z);
atcoder::internal::butterfly(res);
return res;
}
// szsum = aの配列の長さ + bの配列の長さ
vector<mint> sufbat(vector<mint> S,int szsum){
int z = 1 << atcoder::internal::ceil_pow2(szsum-1);
auto res=S;
atcoder::internal::butterfly_inv(res);
res.resize(szsum-1);
mint iz = mint(z).inv();
for (int i = 0; i < szsum - 1; i++) res[i] *= iz;
return res;
}
// szsum = aの配列の長さ + bの配列の長さ
mint inv[MAX],fac[MAX],finv[MAX];
void make(){
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
inv[i]=-inv[mod%i]*(mod/i);
fac[i]=fac[i-1]*i;
finv[i]=finv[i-1]*inv[i];
}
}
mint comb(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[b]*finv[a-b];
}
mint perm(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[a-b];
}
vector<mint> bibun(vector<mint> F,int deg){
vector<mint> res(deg+1);
for(int i=1;i<si(F)&&i-1<=deg;i++){
res[i-1]=F[i]*i;
}
return res;
}
vector<mint> sekibun(vector<mint> F,int deg){
vector<mint> res(deg+1);
for(int i=0;i<min(si(F),deg);i++){
res[i+1]=F[i]*inv[i+1];
}
return res;
}
vector<mint> invv(vector<mint> F,int deg){
assert(F[0]!=0);
mint kake=mint(F[0]).inv();
for(int i=0;i<si(F);i++){
F[i]*=kake;
}
vector<mint> G(1,1);
int len=1;
while(len<=deg){
vector<mint> f=F;f.resize(len*2);
vector<mint> g=G;g.resize(len*2);
atcoder::internal::butterfly(f);
atcoder::internal::butterfly(g);
for(int i=0;i<len*2;i++) f[i]*=g[i];
atcoder::internal::butterfly_inv(f);
vector<mint> nf(len*2);
for(int i=len;i<2*len;i++) nf[i-len]=f[i];
f=nf;
atcoder::internal::butterfly(f);
for(int i=0;i<len*2;i++) f[i]*=g[i];
atcoder::internal::butterfly_inv(f);
mint iz=mint(len*2).inv();
mint coe=-iz*iz;
G.resize(len*2);
for(int i=0;i<len;i++) G[len+i]=f[i]*coe;
len*=2;
}
G.resize(deg+1);
for(int i=0;i<=deg;i++) G[i]*=kake;
return G;
}//1/Tのdeg次以下を返す
vector<mint> logg(vector<mint> F,int deg){
assert(F[0]==1);
vector<mint> FF=bibun(F,deg);
vector<mint> waru=invv(F,deg);
vector<mint> G=atcoder::convolution(FF,waru);
G=sekibun(G,deg);
return G;
}
// F0 = 1
vector<mint> expp(vector<mint> F,int deg){
if(si(F)){
assert(F[0]==0);
}
vector<mint> G(1,1);
int len=1;
while(len<=deg){
vector<mint> nex=logg(G,len*2-1);
for(int i=0;i<si(nex);i++) nex[i]*=(-1);
for(int i=0;i<si(nex);i++){
if(i<si(F)) nex[i]+=F[i];
}
nex[0]++;
nex=atcoder::convolution(nex,G);
nex.resize(len*2);
len*=2;
G=nex;
}
G.resize(deg+1);
return G;
}
// F0 = 0
vector<mint> poww(vector<mint> F,int deg,ll K){
if(K==0){
vector<mint> res(deg+1);
res[0]=1;
return res;
}
if(si(F)==0){
vector<mint> res(deg+1);
return res;
}
ll geta=-1;
mint kake=0;
for(int i=0;i<si(F);i++){
if(F[i]!=0){
geta=i;
kake=F[i].inv();
break;
}
}
if(geta==-1){
vector<mint> res(deg+1);
return res;
}
if(geta>1000000000LL/K){
vector<mint> res(deg+1);
return res;
}
if(geta*K>deg){
vector<mint> res(deg+1);
return res;
}
vector<mint> nF(si(F)-geta);
for(int i=geta;i<si(F);i++){
nF[i-geta]=(F[i]*kake);
}
F=nF;
vector<mint> FF=logg(nF,deg-geta*K);
for(int i=0;i<si(FF);i++) FF[i]*=K;
vector<mint> G=expp(FF,deg-geta*K);
kake=kake.inv();
kake=kake.pow(K);
vector<mint> res(deg+1);
for(int i=0;i<si(G);i++){
res[geta*K+i]=G[i]*kake;
}
return res;
}
mint senkeizenka(vector<mint> A,vector<mint> C,ll K){
if(K<si(A)) return A[K];
int D=si(A);
assert(si(A)==si(C));
vector<mint> Q(D+1);
Q[0]=1;
for(int i=1;i<=D;i++) Q[i]=-C[i-1];
auto P=atcoder::convolution(A,Q);
P.resize(D);
while(K){
auto Qneg=Q;
for(int i=1;i<si(Qneg);i+=2) Qneg[i]=-Qneg[i];
auto x=atcoder::convolution(P,Qneg);
auto y=atcoder::convolution(Q,Qneg);
P.clear();
Q.clear();
for(int i=(K&1);i<si(x);i+=2) P.push_back(x[i]);
for(int i=0;i<si(y);i+=2) Q.push_back(y[i]);
K/=2;
}
return P[0]/Q[0];
}
//a[0],...,a[d-1]
//c[1],...,c[d]
mint senkeizenka2(vector<mint> P,vector<mint> Q,ll K){
while(K){
auto Qneg=Q;
for(int i=1;i<si(Qneg);i+=2) Qneg[i]=-Qneg[i];
auto x=atcoder::convolution(P,Qneg);
auto y=atcoder::convolution(Q,Qneg);
P.clear();
Q.clear();
for(int i=(K&1);i<si(x);i+=2) P.push_back(x[i]);
for(int i=0;i<si(y);i+=2) Q.push_back(y[i]);
K/=2;
}
return P[0]/Q[0];
}
// P/Q
// make() を呼ばないとsekibun呼ぶやつで一部バグる
// MAX=2*deg ぐらい必要な気がする
pair<vector<mint>,vector<mint>> warizan(vector<mint> P,vector<mint> Q){
if(si(P)<si(Q)) return mp(vector<mint>{},P);
auto revP=P;reverse(all(revP));
auto revQ=Q;reverse(all(revQ));
revQ=invv(revQ,si(P)-si(Q));
auto shou=atcoder::convolution(revP,revQ);
shou.resize(si(P)-si(Q)+1);
reverse(all(shou));
auto hiku=atcoder::convolution(Q,shou);
vector<mint> amari(si(P));
for(int i=0;i<si(P);i++){
amari[i]=P[i]-hiku[i];
}
while(si(shou)&&shou.back()==0) shou.pop_back();
while(si(amari)&&amari.back()==0) amari.pop_back();
return mp(shou,amari);
}
// 最高位が0でないようにしている(0のときは空)
// 多項式での除算
vector<mint> multieval(vector<mint> P,vector<mint> que){
if(si(que)==0) return {};
int N=si(que),n=1;
while(n<N) n*=2;
que.resize(n);
vector<vector<mint>> Atree(n+n-1),Btree(n+n-1);
for(int i=0;i<n;i++) Atree[n-1+i]={-que[i],1};
for(int i=n-2;i>=0;i--){
Atree[i]=atcoder::convolution(Atree[2*i+1],Atree[2*i+2]);
}
Btree[0]=warizan(P,Atree[0]).se;
for(int i=1;i<n+n-1;i++){
Btree[i]=warizan(Btree[(i-1)/2],Atree[i]).se;
}
vector<mint> res(N,0);
for(int i=0;i<N;i++){
if(si(Btree[n-1+i])) res[i]=Btree[n-1+i][0];
}
return res;
}
vector<mint> multieval_touhi(vector<mint> P,mint w,int M){
if(M==0) return {};
int N=si(P);
if(N==0) return vector<mint>(M,0);
if(w==0){
vector<mint> res(M,P[0]);
res[0]=0;
for(int i=0;i<N;i++) res[0]+=P[i];
return res;
}
vector<mint> y(N),v(N+M-1);
for(ll i=0;i<N;i++) y[i]=P[i]/w.pow(i*(i-1)/2);
for(ll i=0;i<N+M-1;i++) v[i]=w.pow(i*(i-1)/2);
reverse(all(y));
auto z=atcoder::convolution(y,v);
vector<mint> res(M);
for(ll i=0;i<M;i++){
res[i]=z[N-1+i]/w.pow(i*(i-1)/2);
}
return res;
}
// w^0,...,w^(M-1)まで答える
// 0^0=1
vector<mint> Bernoulli(int N){
vector<mint> F(N+1);
for(int i=0;i<=N;i++) F[i]=finv[i+1];
F=invv(F,N);
for(int i=0;i<=N;i++){
F[i]*=fac[i];
}
return F;
}
vector<mint> Taylor_Shift(vector<mint> F,ll c){
int N=si(F);
vector<mint> A(N),B(N);
for(int i=0;i<N;i++){
A[i]=F[N-1-i]*fac[N-1-i];
B[i]=finv[i]*mint(c).pow(i);
}
vector<mint> p=atcoder::convolution(A,B);
for(int i=0;i<N;i++) p[i]*=finv[N-1-i];
vector<mint> res(N);
for(int i=0;i<N;i++) res[i]=p[N-1-i];
return res;
}
vector<mint> manyproduct(vector<vector<mint>> S){
deque<vector<mint>> deq;
for(auto a:S) deq.push_back(a);
while(si(deq)>1){
auto a=deq.front();deq.pop_front();
auto b=deq.front();deq.pop_front();
deq.push_back(atcoder::convolution(a,b));
}
return deq[0];
}
vector<mint> PrefixSum(vector<mint> p){
int N=si(p);
vector<mint> f(N);
for(int i=1;i<N;i++) f[i]=p[i]*fac[i];
vector<mint> Be=Bernoulli(N);
if(si(Be)>1) Be[1]=-Be[1];
vector<mint> g(N);
for(int j=0;j<N;j++) g[j]=Be[j]*finv[j];
reverse(all(g));
auto h=atcoder::convolution(f,g);
vector<mint> res(N+1);
for(int i=1;i<=N;i++){
res[i]=h[N-2+i]*finv[i];
}
res[0]+=p[0];
res[1]+=p[0];
return res;
}
mint zen[MAX],f[MAX],S[MAX];
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
make();
int N;cin>>N;
vector<ll> A(N);
for(int i=0;i<N;i++) cin>>A[i];
if(N==1){
cout<<A[0]<<endl;
return 0;
}
if(N==2){
cout<<(A[0]*A[1])%mod<<endl;
return 0;
}
for(ll n=1;n<=N;n++){
zen[n]=mint(2).pow(n*(n-1)/2);
f[n]=zen[n];
for(ll i=1;i<n;i++) f[n]-=comb(n-1,i-1)*f[i]*zen[n-i];
}
S[1]=1;
for(ll n=3;n<N;n++){
S[n]=f[n];
vector<mint> T(n);
for(ll j=1;j<n;j++) T[j]=S[j]*finv[j-1]*n;
auto Z=expp(T,n);
S[n]-=fac[n]*(mint(n).inv().pow(2))*Z[n];
}
vector<vector<mint>> B;
for(ll x:A) B.push_back({1,x});
auto C=manyproduct(B);
ll n=N;
mint ans=0;
S[n]=f[n];
vector<mint> T(n),TT(n);
for(ll j=1;j<n;j++) T[j]=S[j]*finv[j-1]*n;
for(ll j=1;j<n;j++) TT[j-1]=S[j]*finv[j-1]*j*n;
for(ll k=2;k<=n;k++){
auto Z=poww(T,n,k);
auto ZZ=poww(TT,n-k,k);
ans+=fac[n-k]*(mint(n).inv().pow(2))*ZZ[n-k]*C[k];
S[n]-=fac[n]*(mint(n).inv().pow(2))*finv[k]*Z[n];
}
ans+=S[n]*C[1];
cout<<ans.val()<<"\n";
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3868kb
input:
3 8 5 9
output:
1102
result:
ok "1102"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3832kb
input:
5 4 2 1 3 10
output:
63860
result:
ok "63860"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3768kb
input:
7 229520041 118275986 281963154 784360383 478705114 655222915 970715006
output:
35376232
result:
ok "35376232"
Test #4:
score: 0
Accepted
time: 111ms
memory: 3872kb
input:
300 7 8 2 8 6 5 5 3 2 3 8 0 6 0 1 0 10 7 10 0 1 0 6 7 2 6 4 7 9 4 6 5 5 9 8 5 4 5 3 5 4 4 10 2 4 9 7 5 2 2 5 6 3 6 8 2 8 3 6 2 5 1 10 3 0 7 1 9 6 5 10 0 3 0 2 4 2 7 6 10 1 0 0 9 4 3 5 5 2 6 1 8 5 4 0 0 5 8 8 1 3 9 9 9 8 1 4 10 7 4 8 5 0 4 3 4 4 8 1 6 1 10 9 3 2 5 0 0 5 2 7 5 4 10 3 5 10 10 7 6 10 3 ...
output:
409590176
result:
ok "409590176"
Test #5:
score: 0
Accepted
time: 141ms
memory: 3980kb
input:
335 4 3 7 7 8 1 4 7 8 8 4 3 5 5 6 8 8 9 3 7 2 4 6 6 6 3 0 7 8 4 6 1 9 10 9 9 0 7 10 3 3 4 10 5 10 4 10 3 7 7 1 9 8 4 0 3 8 1 10 10 7 5 2 7 6 0 4 7 5 9 1 4 10 3 2 9 2 0 1 5 3 5 5 9 9 3 5 6 10 6 9 5 10 10 8 10 5 9 6 1 10 6 7 1 0 7 10 1 6 7 8 2 2 10 1 3 4 1 5 3 3 2 4 10 3 5 8 0 10 0 9 4 9 2 7 3 8 7 4 7...
output:
997747
result:
ok "997747"
Test #6:
score: 0
Accepted
time: 8ms
memory: 3820kb
input:
84 2 5 3 4 5 8 10 5 2 10 7 6 10 10 7 7 3 2 1 7 8 5 9 10 7 5 6 1 2 8 2 8 6 5 4 6 9 0 3 9 3 2 0 2 9 0 4 4 8 10 3 4 6 10 10 5 8 1 10 8 2 7 3 10 8 8 3 2 8 7 4 10 2 6 9 9 3 6 3 3 9 0 7 6
output:
182929290
result:
ok "182929290"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3804kb
input:
54 9 2 1 10 6 6 10 4 7 6 0 3 8 10 5 7 8 6 1 10 9 6 1 8 0 4 2 7 4 0 9 8 5 3 0 4 3 6 1 8 4 1 4 9 6 6 8 0 8 0 0 7 6 9
output:
43066240
result:
ok "43066240"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3820kb
input:
32 0 8 6 8 1 3 9 5 9 0 4 2 4 4 3 10 2 3 1 8 2 6 5 3 9 5 0 0 5 2 1 4
output:
718335570
result:
ok "718335570"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3828kb
input:
1 998244352
output:
998244352
result:
ok "998244352"
Test #10:
score: 0
Accepted
time: 201ms
memory: 3928kb
input:
400 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244...
output:
764763555
result:
ok "764763555"
Test #11:
score: 0
Accepted
time: 9ms
memory: 3816kb
input:
85 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 9982443...
output:
360553407
result:
ok "360553407"
Test #12:
score: 0
Accepted
time: 44ms
memory: 3904kb
input:
191 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244352 998244...
output:
991556265
result:
ok "991556265"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3832kb
input:
5 998244352 998244352 998244352 998244352 998244352
output:
998243313
result:
ok "998243313"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3748kb
input:
1 1
output:
1
result:
ok "1"
Test #15:
score: 0
Accepted
time: 201ms
memory: 4004kb
input:
400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
304058802
result:
ok "304058802"
Test #16:
score: 0
Accepted
time: 188ms
memory: 3928kb
input:
386 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
874115996
result:
ok "874115996"
Test #17:
score: 0
Accepted
time: 123ms
memory: 3980kb
input:
313 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
597837845
result:
ok "597837845"
Test #18:
score: 0
Accepted
time: 82ms
memory: 3916kb
input:
268 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
419739297
result:
ok "419739297"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3844kb
input:
54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output:
643244867
result:
ok "643244867"
Test #20:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output:
338935899
result:
ok "338935899"
Test #21:
score: 0
Accepted
time: 1ms
memory: 3832kb
input:
12 1 1 1 1 1 1 1 1 1 1 1 1
output:
530659406
result:
ok "530659406"
Test #22:
score: 0
Accepted
time: 1ms
memory: 3824kb
input:
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output:
873741770
result:
ok "873741770"
Test #23:
score: 0
Accepted
time: 163ms
memory: 3984kb
input:
358 1115290 857418774 525660612 441235960 968251556 195367707 499270374 150410361 311616821 559224631 56376437 943235745 210570297 973440142 173148033 156186709 113638344 240700037 220654177 232430149 10319333 895951986 632968612 969427208 953160305 662164174 33843437 666747237 34205190 811103418 41...
output:
286780900
result:
ok "286780900"
Test #24:
score: 0
Accepted
time: 150ms
memory: 4152kb
input:
344 210579027 582997879 503991744 614640417 67235757 419878515 164535437 554084256 51607125 652025880 891447125 13583488 80121136 152736049 421847155 801187930 34239618 40500488 767047613 353848772 24784010 319866280 913730443 802405315 9245074 512437704 262407695 883841184 511503173 334945884 19176...
output:
217532565
result:
ok "217532565"
Test #25:
score: 0
Accepted
time: 133ms
memory: 3992kb
input:
325 630363144 393404219 366794662 459012744 644644744 90410787 930109789 246555884 917192211 5371492 414476764 571657222 667592533 200323050 421503836 125424416 264941519 988742481 275608116 281878470 441716151 276997372 469030579 287933529 258099275 745817136 121648206 734858183 6675212 48521173 17...
output:
805089310
result:
ok "805089310"
Test #26:
score: 0
Accepted
time: 200ms
memory: 3924kb
input:
400 823489320 406308599 710963770 183707427 192930969 941365774 318564299 391028855 945374838 651744270 515755727 220857626 599403217 214957584 335628890 771694833 40989299 34892948 630275822 869708185 432704750 924850167 707864789 232688853 406616372 529994171 782650336 979286144 653704962 98275198...
output:
227120863
result:
ok "227120863"
Test #27:
score: 0
Accepted
time: 196ms
memory: 4208kb
input:
400 805673855 954340879 768398694 792304488 160627816 690839001 634355243 680917132 889295686 174793413 162216449 663827931 792641124 536196712 718524372 416336507 377989502 506596252 498339899 205499242 720836814 666357765 542341092 715613501 108264501 828631634 378880723 4945299 472651139 36366555...
output:
197153359
result:
ok "197153359"
Test #28:
score: 0
Accepted
time: 200ms
memory: 4168kb
input:
400 573858409 158564131 626297515 95107209 839325592 131488841 262394741 598473086 279712965 923126037 768477685 872125938 43550359 350073805 625331165 631979459 231780563 364979372 994161997 417207682 561100817 652033756 620534272 372707170 800776175 349668140 135175766 794164905 319904460 23767601...
output:
309947167
result:
ok "309947167"
Test #29:
score: 0
Accepted
time: 31ms
memory: 4124kb
input:
161 454284697 718044840 911733869 788445829 374976576 283555956 330659567 534673219 763772621 533686340 997431381 315009839 801324614 867648208 840434404 84390366 444646874 652727596 245127393 429009611 491221735 782941712 766298213 670004861 389539042 58372655 501168063 678515082 901575199 7964062 ...
output:
871565443
result:
ok "871565443"
Test #30:
score: 0
Accepted
time: 31ms
memory: 3952kb
input:
162 151292163 943012123 167343147 819676643 584819196 603260437 344227100 217480474 257123917 755733732 306150953 58563430 585700931 430100762 23364684 779598621 281842628 501243718 739611077 892539286 74267401 75305112 125317256 859095786 751541515 405943984 918972027 808877799 705127200 721405494 ...
output:
273432531
result:
ok "273432531"
Test #31:
score: 0
Accepted
time: 98ms
memory: 3860kb
input:
286 600838530 575651850 385279426 475664485 619069265 780822783 860939782 184686123 193863774 466950919 765401970 705574987 282843644 717393988 375193483 210523577 335822289 399592519 691770149 949281236 374732311 386267435 94137955 739197796 853274439 85692571 391770291 584612694 455182007 64033146...
output:
581998699
result:
ok "581998699"
Test #32:
score: 0
Accepted
time: 4ms
memory: 3804kb
input:
61 453833616 501467684 4992671 214825639 871776849 218199413 42498305 303731723 912156523 129282295 439845605 182960525 185237067 162024603 36559317 688854981 935232225 246423320 92982685 695989722 630828913 551225463 167009365 765939546 822255011 178394229 882957486 3774194 362820770 200498412 9203...
output:
455579427
result:
ok "455579427"
Test #33:
score: 0
Accepted
time: 1ms
memory: 3852kb
input:
25 900307596 286223988 229751451 948490346 250323590 175633754 171483351 707853698 603512678 51411170 126676903 326582510 111531585 521302732 467030281 284302822 453471425 898992972 344271140 632092014 841124127 159268130 234849517 332336122 538047172
output:
641428561
result:
ok "641428561"
Test #34:
score: 0
Accepted
time: 3ms
memory: 4092kb
input:
50 893955548 5432673 340595831 583427119 94992225 787645123 311038284 546749098 933218937 561482178 527027577 871516321 329687526 96875316 862464008 320975040 435140352 951500073 831730146 242883780 961810021 310011134 441489680 217976348 203907166 525210038 295522145 713990656 44280374 492792810 10...
output:
474987173
result:
ok "474987173"
Test #35:
score: 0
Accepted
time: 1ms
memory: 3728kb
input:
17 726738121 723815755 532257301 649033140 817058831 665912348 585846647 472719308 53020833 679093694 601943548 536712177 917063040 137577090 676474390 447455603 55046910
output:
205253339
result:
ok "205253339"
Test #36:
score: 0
Accepted
time: 1ms
memory: 3876kb
input:
13 319526944 707203324 397137993 712092752 253972256 682960643 636749775 764641774 359483944 695780350 619279205 717907790 322375408
output:
301609478
result:
ok "301609478"
Test #37:
score: 0
Accepted
time: 1ms
memory: 3772kb
input:
15 673123463 250231589 715576329 413978055 995958701 401244843 682058967 349009605 504949036 838330837 739330277 480154478 764761812 434210368 470676772
output:
460419982
result:
ok "460419982"
Extra Test:
score: 0
Extra Test Passed