QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#317295 | #8171. Cola | zhangmj2008 | AC ✓ | 159ms | 159560kb | C++17 | 16.8kb | 2024-01-28 19:48:18 | 2024-01-28 19:48:18 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;
template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }
int log( int x ) { return 31 - __builtin_clz( x ); }
int log( ll x ) { return 63 - __builtin_clzll( x ); }
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using modint = atcoder::modint998244353;
void solve( ) {
constexpr int S = 2e7;
vector< modint > fact( S + 1 ); fact[0] = 1; for( int i = 1; i <= S; i ++ ) fact[i] = fact[i - 1] * i;
vector< modint > ifact( S + 1 ); ifact[S] = fact[S].inv( ); for( int i = S; i >= 1; i -- ) ifact[i - 1] = ifact[i] * i;
auto binom = [&] ( int n , int m ) -> modint { return ( m < 0 || m > n ) ? ( 0 ) : ( fact[n] * ifact[m] * ifact[n - m] ); } ;
int n , m; cin >> n >> m;
modint ans = 0;
for( int k = -10000; k <= 10000; k ++ ) {
int alpha = ( 3 * k * k + k ) / 2; if( alpha >= m ) continue;
ans += ( ( k & 1 ) ? ( -1 ) : ( 1 ) ) * binom( n + m - alpha - 1 , n );
}
cout << ( ans * ifact[n] ).val( ) << "\n";
}
int main( ) {
ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
int T = 1; while( T -- ) solve( ); return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 147ms
memory: 159364kb
input:
2 1
output:
499122177
result:
ok "499122177"
Test #2:
score: 0
Accepted
time: 143ms
memory: 159220kb
input:
1 1
output:
1
result:
ok "1"
Test #3:
score: 0
Accepted
time: 143ms
memory: 159400kb
input:
167 91
output:
469117530
result:
ok "469117530"
Test #4:
score: 0
Accepted
time: 159ms
memory: 159364kb
input:
9806463 8975779
output:
125384417
result:
ok "125384417"
Test #5:
score: 0
Accepted
time: 144ms
memory: 159464kb
input:
9138576 8731432
output:
306972756
result:
ok "306972756"
Test #6:
score: 0
Accepted
time: 147ms
memory: 159212kb
input:
9978791 9033584
output:
932159263
result:
ok "932159263"
Test #7:
score: 0
Accepted
time: 155ms
memory: 159224kb
input:
9811954 9790000
output:
404679920
result:
ok "404679920"
Test #8:
score: 0
Accepted
time: 147ms
memory: 159324kb
input:
9685105 9276909
output:
32996715
result:
ok "32996715"
Test #9:
score: 0
Accepted
time: 156ms
memory: 159328kb
input:
10000000 10000000
output:
309225852
result:
ok "309225852"
Test #10:
score: 0
Accepted
time: 139ms
memory: 159428kb
input:
10000000 9999999
output:
635234302
result:
ok "635234302"
Test #11:
score: 0
Accepted
time: 155ms
memory: 159148kb
input:
10000000 9999998
output:
239117935
result:
ok "239117935"
Test #12:
score: 0
Accepted
time: 151ms
memory: 159424kb
input:
10000000 9999997
output:
294859983
result:
ok "294859983"
Test #13:
score: 0
Accepted
time: 152ms
memory: 159144kb
input:
9999999 9999999
output:
305530110
result:
ok "305530110"
Test #14:
score: 0
Accepted
time: 143ms
memory: 159328kb
input:
9999999 9999998
output:
164959553
result:
ok "164959553"
Test #15:
score: 0
Accepted
time: 143ms
memory: 159212kb
input:
9999999 9999997
output:
532215262
result:
ok "532215262"
Test #16:
score: 0
Accepted
time: 147ms
memory: 159420kb
input:
9999999 9999996
output:
123628609
result:
ok "123628609"
Test #17:
score: 0
Accepted
time: 144ms
memory: 159332kb
input:
9999998 9999998
output:
223852357
result:
ok "223852357"
Test #18:
score: 0
Accepted
time: 151ms
memory: 159292kb
input:
9999998 9999997
output:
75877991
result:
ok "75877991"
Test #19:
score: 0
Accepted
time: 148ms
memory: 159492kb
input:
9999998 9999996
output:
494540335
result:
ok "494540335"
Test #20:
score: 0
Accepted
time: 151ms
memory: 159420kb
input:
9999998 9999995
output:
19191738
result:
ok "19191738"
Test #21:
score: 0
Accepted
time: 147ms
memory: 159472kb
input:
9999997 9999997
output:
238385746
result:
ok "238385746"
Test #22:
score: 0
Accepted
time: 140ms
memory: 159396kb
input:
9999997 9999996
output:
138191521
result:
ok "138191521"
Test #23:
score: 0
Accepted
time: 154ms
memory: 159424kb
input:
9999997 9999995
output:
721536184
result:
ok "721536184"
Test #24:
score: 0
Accepted
time: 143ms
memory: 159428kb
input:
9999997 9999994
output:
627112720
result:
ok "627112720"
Test #25:
score: 0
Accepted
time: 151ms
memory: 159376kb
input:
8113616 1826492
output:
629546539
result:
ok "629546539"
Test #26:
score: 0
Accepted
time: 146ms
memory: 159348kb
input:
7230333 4233627
output:
870135249
result:
ok "870135249"
Test #27:
score: 0
Accepted
time: 151ms
memory: 159448kb
input:
9734872 9617286
output:
780426509
result:
ok "780426509"
Test #28:
score: 0
Accepted
time: 147ms
memory: 159356kb
input:
6780022 6393958
output:
508662111
result:
ok "508662111"
Test #29:
score: 0
Accepted
time: 152ms
memory: 159376kb
input:
4986441 1909344
output:
762587564
result:
ok "762587564"
Test #30:
score: 0
Accepted
time: 151ms
memory: 159356kb
input:
9936540 91728
output:
651924678
result:
ok "651924678"
Test #31:
score: 0
Accepted
time: 144ms
memory: 159352kb
input:
9099529 94239
output:
775532638
result:
ok "775532638"
Test #32:
score: 0
Accepted
time: 140ms
memory: 159472kb
input:
9564814 93545
output:
474538902
result:
ok "474538902"
Test #33:
score: 0
Accepted
time: 152ms
memory: 159324kb
input:
9707744 92094
output:
354024226
result:
ok "354024226"
Test #34:
score: 0
Accepted
time: 147ms
memory: 159236kb
input:
9167687 94820
output:
858989558
result:
ok "858989558"
Test #35:
score: 0
Accepted
time: 148ms
memory: 159364kb
input:
10000000 100000
output:
609345536
result:
ok "609345536"
Test #36:
score: 0
Accepted
time: 148ms
memory: 159328kb
input:
10000000 99999
output:
217258255
result:
ok "217258255"
Test #37:
score: 0
Accepted
time: 151ms
memory: 159428kb
input:
10000000 99998
output:
485057696
result:
ok "485057696"
Test #38:
score: 0
Accepted
time: 147ms
memory: 159324kb
input:
10000000 99997
output:
193579142
result:
ok "193579142"
Test #39:
score: 0
Accepted
time: 143ms
memory: 159236kb
input:
9999999 100000
output:
584105896
result:
ok "584105896"
Test #40:
score: 0
Accepted
time: 151ms
memory: 159324kb
input:
9999999 99999
output:
707014865
result:
ok "707014865"
Test #41:
score: 0
Accepted
time: 152ms
memory: 159296kb
input:
9999999 99998
output:
872987417
result:
ok "872987417"
Test #42:
score: 0
Accepted
time: 151ms
memory: 159396kb
input:
9999999 99997
output:
707304988
result:
ok "707304988"
Test #43:
score: 0
Accepted
time: 144ms
memory: 159248kb
input:
9999998 100000
output:
789028925
result:
ok "789028925"
Test #44:
score: 0
Accepted
time: 151ms
memory: 159292kb
input:
9999998 99999
output:
628266237
result:
ok "628266237"
Test #45:
score: 0
Accepted
time: 147ms
memory: 159368kb
input:
9999998 99998
output:
38358057
result:
ok "38358057"
Test #46:
score: 0
Accepted
time: 144ms
memory: 159208kb
input:
9999998 99997
output:
785931240
result:
ok "785931240"
Test #47:
score: 0
Accepted
time: 156ms
memory: 159316kb
input:
9999997 100000
output:
945452715
result:
ok "945452715"
Test #48:
score: 0
Accepted
time: 152ms
memory: 159280kb
input:
9999997 99999
output:
537126025
result:
ok "537126025"
Test #49:
score: 0
Accepted
time: 151ms
memory: 159484kb
input:
9999997 99998
output:
837196653
result:
ok "837196653"
Test #50:
score: 0
Accepted
time: 147ms
memory: 159224kb
input:
9999997 99997
output:
263045713
result:
ok "263045713"
Test #51:
score: 0
Accepted
time: 147ms
memory: 159332kb
input:
2 2
output:
1
result:
ok "1"
Test #52:
score: 0
Accepted
time: 143ms
memory: 159264kb
input:
3 3
output:
831870295
result:
ok "831870295"
Test #53:
score: 0
Accepted
time: 152ms
memory: 159356kb
input:
4 4
output:
374341633
result:
ok "374341633"
Test #54:
score: 0
Accepted
time: 151ms
memory: 159504kb
input:
3 2
output:
499122177
result:
ok "499122177"
Test #55:
score: 0
Accepted
time: 144ms
memory: 159428kb
input:
4 3
output:
623902721
result:
ok "623902721"
Test #56:
score: 0
Accepted
time: 152ms
memory: 159348kb
input:
5 4
output:
890101215
result:
ok "890101215"
Test #57:
score: 0
Accepted
time: 143ms
memory: 159496kb
input:
3 1
output:
166374059
result:
ok "166374059"
Test #58:
score: 0
Accepted
time: 148ms
memory: 159508kb
input:
4 2
output:
166374059
result:
ok "166374059"
Test #59:
score: 0
Accepted
time: 148ms
memory: 159336kb
input:
5 3
output:
16637406
result:
ok "16637406"
Test #60:
score: 0
Accepted
time: 151ms
memory: 159560kb
input:
6 4
output:
508827330
result:
ok "508827330"
Test #61:
score: 0
Accepted
time: 147ms
memory: 159320kb
input:
4 1
output:
291154603
result:
ok "291154603"
Test #62:
score: 0
Accepted
time: 143ms
memory: 159496kb
input:
5 2
output:
291154603
result:
ok "291154603"
Test #63:
score: 0
Accepted
time: 141ms
memory: 159328kb
input:
6 3
output:
859599304
result:
ok "859599304"
Test #64:
score: 0
Accepted
time: 149ms
memory: 159496kb
input:
7 4
output:
694809760
result:
ok "694809760"
Test #65:
score: 0
Accepted
time: 152ms
memory: 159368kb
input:
5629201 38642
output:
327294391
result:
ok "327294391"
Test #66:
score: 0
Accepted
time: 143ms
memory: 159328kb
input:
126092 74219
output:
27573951
result:
ok "27573951"
Test #67:
score: 0
Accepted
time: 155ms
memory: 159328kb
input:
8593075 8689
output:
393785113
result:
ok "393785113"
Test #68:
score: 0
Accepted
time: 148ms
memory: 159316kb
input:
1076972 58637
output:
600806929
result:
ok "600806929"
Test #69:
score: 0
Accepted
time: 142ms
memory: 159244kb
input:
463217 39187
output:
408712022
result:
ok "408712022"
Extra Test:
score: 0
Extra Test Passed