QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#317295#8171. Colazhangmj2008AC ✓159ms159560kbC++1716.8kb2024-01-28 19:48:182024-01-28 19:48:18

Judging History

你现在查看的是最新测评结果

  • [2024-01-28 19:48:18]
  • 评测
  • 测评结果:AC
  • 用时:159ms
  • 内存:159560kb
  • [2024-01-28 19:48:18]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;

template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }

int log( int x ) { return 31 - __builtin_clz( x ); }
int log( ll x ) { return 63 - __builtin_clzll( x ); }

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using modint = atcoder::modint998244353;

void solve( ) {
	constexpr int S = 2e7;
	vector< modint > fact( S + 1 ); fact[0] = 1; for( int i = 1; i <= S; i ++ ) fact[i] = fact[i - 1] * i;
	vector< modint > ifact( S + 1 ); ifact[S] = fact[S].inv( ); for( int i = S; i >= 1; i -- ) ifact[i - 1] = ifact[i] * i;
	auto binom = [&] ( int n , int m ) -> modint { return ( m < 0 || m > n ) ? ( 0 ) : ( fact[n] * ifact[m] * ifact[n - m] ); } ;

	int n , m; cin >> n >> m;

	modint ans = 0;
	for( int k = -10000; k <= 10000; k ++ ) {
		int alpha = ( 3 * k * k + k ) / 2; if( alpha >= m ) continue;
		ans += ( ( k & 1 ) ? ( -1 ) : ( 1 ) ) * binom( n + m - alpha - 1 , n );
	}
	cout << ( ans * ifact[n] ).val( ) << "\n";
}

int main( ) {
	ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
	int T = 1; while( T -- ) solve( ); return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 147ms
memory: 159364kb

input:

2 1

output:

499122177

result:

ok "499122177"

Test #2:

score: 0
Accepted
time: 143ms
memory: 159220kb

input:

1 1

output:

1

result:

ok "1"

Test #3:

score: 0
Accepted
time: 143ms
memory: 159400kb

input:

167 91

output:

469117530

result:

ok "469117530"

Test #4:

score: 0
Accepted
time: 159ms
memory: 159364kb

input:

9806463 8975779

output:

125384417

result:

ok "125384417"

Test #5:

score: 0
Accepted
time: 144ms
memory: 159464kb

input:

9138576 8731432

output:

306972756

result:

ok "306972756"

Test #6:

score: 0
Accepted
time: 147ms
memory: 159212kb

input:

9978791 9033584

output:

932159263

result:

ok "932159263"

Test #7:

score: 0
Accepted
time: 155ms
memory: 159224kb

input:

9811954 9790000

output:

404679920

result:

ok "404679920"

Test #8:

score: 0
Accepted
time: 147ms
memory: 159324kb

input:

9685105 9276909

output:

32996715

result:

ok "32996715"

Test #9:

score: 0
Accepted
time: 156ms
memory: 159328kb

input:

10000000 10000000

output:

309225852

result:

ok "309225852"

Test #10:

score: 0
Accepted
time: 139ms
memory: 159428kb

input:

10000000 9999999

output:

635234302

result:

ok "635234302"

Test #11:

score: 0
Accepted
time: 155ms
memory: 159148kb

input:

10000000 9999998

output:

239117935

result:

ok "239117935"

Test #12:

score: 0
Accepted
time: 151ms
memory: 159424kb

input:

10000000 9999997

output:

294859983

result:

ok "294859983"

Test #13:

score: 0
Accepted
time: 152ms
memory: 159144kb

input:

9999999 9999999

output:

305530110

result:

ok "305530110"

Test #14:

score: 0
Accepted
time: 143ms
memory: 159328kb

input:

9999999 9999998

output:

164959553

result:

ok "164959553"

Test #15:

score: 0
Accepted
time: 143ms
memory: 159212kb

input:

9999999 9999997

output:

532215262

result:

ok "532215262"

Test #16:

score: 0
Accepted
time: 147ms
memory: 159420kb

input:

9999999 9999996

output:

123628609

result:

ok "123628609"

Test #17:

score: 0
Accepted
time: 144ms
memory: 159332kb

input:

9999998 9999998

output:

223852357

result:

ok "223852357"

Test #18:

score: 0
Accepted
time: 151ms
memory: 159292kb

input:

9999998 9999997

output:

75877991

result:

ok "75877991"

Test #19:

score: 0
Accepted
time: 148ms
memory: 159492kb

input:

9999998 9999996

output:

494540335

result:

ok "494540335"

Test #20:

score: 0
Accepted
time: 151ms
memory: 159420kb

input:

9999998 9999995

output:

19191738

result:

ok "19191738"

Test #21:

score: 0
Accepted
time: 147ms
memory: 159472kb

input:

9999997 9999997

output:

238385746

result:

ok "238385746"

Test #22:

score: 0
Accepted
time: 140ms
memory: 159396kb

input:

9999997 9999996

output:

138191521

result:

ok "138191521"

Test #23:

score: 0
Accepted
time: 154ms
memory: 159424kb

input:

9999997 9999995

output:

721536184

result:

ok "721536184"

Test #24:

score: 0
Accepted
time: 143ms
memory: 159428kb

input:

9999997 9999994

output:

627112720

result:

ok "627112720"

Test #25:

score: 0
Accepted
time: 151ms
memory: 159376kb

input:

8113616 1826492

output:

629546539

result:

ok "629546539"

Test #26:

score: 0
Accepted
time: 146ms
memory: 159348kb

input:

7230333 4233627

output:

870135249

result:

ok "870135249"

Test #27:

score: 0
Accepted
time: 151ms
memory: 159448kb

input:

9734872 9617286

output:

780426509

result:

ok "780426509"

Test #28:

score: 0
Accepted
time: 147ms
memory: 159356kb

input:

6780022 6393958

output:

508662111

result:

ok "508662111"

Test #29:

score: 0
Accepted
time: 152ms
memory: 159376kb

input:

4986441 1909344

output:

762587564

result:

ok "762587564"

Test #30:

score: 0
Accepted
time: 151ms
memory: 159356kb

input:

9936540 91728

output:

651924678

result:

ok "651924678"

Test #31:

score: 0
Accepted
time: 144ms
memory: 159352kb

input:

9099529 94239

output:

775532638

result:

ok "775532638"

Test #32:

score: 0
Accepted
time: 140ms
memory: 159472kb

input:

9564814 93545

output:

474538902

result:

ok "474538902"

Test #33:

score: 0
Accepted
time: 152ms
memory: 159324kb

input:

9707744 92094

output:

354024226

result:

ok "354024226"

Test #34:

score: 0
Accepted
time: 147ms
memory: 159236kb

input:

9167687 94820

output:

858989558

result:

ok "858989558"

Test #35:

score: 0
Accepted
time: 148ms
memory: 159364kb

input:

10000000 100000

output:

609345536

result:

ok "609345536"

Test #36:

score: 0
Accepted
time: 148ms
memory: 159328kb

input:

10000000 99999

output:

217258255

result:

ok "217258255"

Test #37:

score: 0
Accepted
time: 151ms
memory: 159428kb

input:

10000000 99998

output:

485057696

result:

ok "485057696"

Test #38:

score: 0
Accepted
time: 147ms
memory: 159324kb

input:

10000000 99997

output:

193579142

result:

ok "193579142"

Test #39:

score: 0
Accepted
time: 143ms
memory: 159236kb

input:

9999999 100000

output:

584105896

result:

ok "584105896"

Test #40:

score: 0
Accepted
time: 151ms
memory: 159324kb

input:

9999999 99999

output:

707014865

result:

ok "707014865"

Test #41:

score: 0
Accepted
time: 152ms
memory: 159296kb

input:

9999999 99998

output:

872987417

result:

ok "872987417"

Test #42:

score: 0
Accepted
time: 151ms
memory: 159396kb

input:

9999999 99997

output:

707304988

result:

ok "707304988"

Test #43:

score: 0
Accepted
time: 144ms
memory: 159248kb

input:

9999998 100000

output:

789028925

result:

ok "789028925"

Test #44:

score: 0
Accepted
time: 151ms
memory: 159292kb

input:

9999998 99999

output:

628266237

result:

ok "628266237"

Test #45:

score: 0
Accepted
time: 147ms
memory: 159368kb

input:

9999998 99998

output:

38358057

result:

ok "38358057"

Test #46:

score: 0
Accepted
time: 144ms
memory: 159208kb

input:

9999998 99997

output:

785931240

result:

ok "785931240"

Test #47:

score: 0
Accepted
time: 156ms
memory: 159316kb

input:

9999997 100000

output:

945452715

result:

ok "945452715"

Test #48:

score: 0
Accepted
time: 152ms
memory: 159280kb

input:

9999997 99999

output:

537126025

result:

ok "537126025"

Test #49:

score: 0
Accepted
time: 151ms
memory: 159484kb

input:

9999997 99998

output:

837196653

result:

ok "837196653"

Test #50:

score: 0
Accepted
time: 147ms
memory: 159224kb

input:

9999997 99997

output:

263045713

result:

ok "263045713"

Test #51:

score: 0
Accepted
time: 147ms
memory: 159332kb

input:

2 2

output:

1

result:

ok "1"

Test #52:

score: 0
Accepted
time: 143ms
memory: 159264kb

input:

3 3

output:

831870295

result:

ok "831870295"

Test #53:

score: 0
Accepted
time: 152ms
memory: 159356kb

input:

4 4

output:

374341633

result:

ok "374341633"

Test #54:

score: 0
Accepted
time: 151ms
memory: 159504kb

input:

3 2

output:

499122177

result:

ok "499122177"

Test #55:

score: 0
Accepted
time: 144ms
memory: 159428kb

input:

4 3

output:

623902721

result:

ok "623902721"

Test #56:

score: 0
Accepted
time: 152ms
memory: 159348kb

input:

5 4

output:

890101215

result:

ok "890101215"

Test #57:

score: 0
Accepted
time: 143ms
memory: 159496kb

input:

3 1

output:

166374059

result:

ok "166374059"

Test #58:

score: 0
Accepted
time: 148ms
memory: 159508kb

input:

4 2

output:

166374059

result:

ok "166374059"

Test #59:

score: 0
Accepted
time: 148ms
memory: 159336kb

input:

5 3

output:

16637406

result:

ok "16637406"

Test #60:

score: 0
Accepted
time: 151ms
memory: 159560kb

input:

6 4

output:

508827330

result:

ok "508827330"

Test #61:

score: 0
Accepted
time: 147ms
memory: 159320kb

input:

4 1

output:

291154603

result:

ok "291154603"

Test #62:

score: 0
Accepted
time: 143ms
memory: 159496kb

input:

5 2

output:

291154603

result:

ok "291154603"

Test #63:

score: 0
Accepted
time: 141ms
memory: 159328kb

input:

6 3

output:

859599304

result:

ok "859599304"

Test #64:

score: 0
Accepted
time: 149ms
memory: 159496kb

input:

7 4

output:

694809760

result:

ok "694809760"

Test #65:

score: 0
Accepted
time: 152ms
memory: 159368kb

input:

5629201 38642

output:

327294391

result:

ok "327294391"

Test #66:

score: 0
Accepted
time: 143ms
memory: 159328kb

input:

126092 74219

output:

27573951

result:

ok "27573951"

Test #67:

score: 0
Accepted
time: 155ms
memory: 159328kb

input:

8593075 8689

output:

393785113

result:

ok "393785113"

Test #68:

score: 0
Accepted
time: 148ms
memory: 159316kb

input:

1076972 58637

output:

600806929

result:

ok "600806929"

Test #69:

score: 0
Accepted
time: 142ms
memory: 159244kb

input:

463217 39187

output:

408712022

result:

ok "408712022"

Extra Test:

score: 0
Extra Test Passed